
Approximate Probabilistic Parallel Multiset
Rewriting using MCMC

Stefan Lüdtke, Max Schröder, and Thomas Kirste

Institute of Computer Science, University of Rostock, Germany
{stefan.luedtke2, max.schroeder, thomas.kirste}@uni-rostock.de

Abstract. Probabilistic parallel multiset rewriting systems (PPMRS)
model probabilistic, dynamic systems consisting of multiple, (inter-) act-
ing agents and objects (entities), where multiple individual actions can
be performed in parallel. The main computational challenge in these
approaches is computing the distribution of parallel actions (compound
actions), that can be formulated as a constraint satisfaction problem
(CSP). Unfortunately, computing the partition function for this distri-
bution exactly is infeasible, as it requires to enumerate all solutions of
the CSP, which are subject to a combinatorial explosion.
The central technical contribution of this paper is an efficient Markov
Chain Monte Carlo (MCMC)-based algorithm to approximate the parti-
tion function, and thus the compound action distribution. The proposal
function works by performing backtracking in the CSP search tree, and
then sampling a solution of the remaining, partially solved CSP.
We demonstrate our approach on a Lotka-Volterra system with PPMRS
semantics, where exact compound action computation is infeasible. Our
approach allows to perform simulation studies and Bayesian filtering with
PPMRS semantics in scenarios where this was previously infeasible.

Keywords: Bayesian filtering, probabilistic multiset rewriting system,
Metropolis-Hastings algorithm, Markov chain monte carlo, constraint
satisfaction problem

1 Introduction

Modelling dynamic systems is fundamental for a variety of AI tasks. Multiset
Rewriting Systems (MRSs) provide a convenient mechanism to represent dy-
namic systems that consist of multiple (inter-)acting entities where the system
dynamics can be described in terms of rewriting rules (also called actions). Typ-
ically, MRS are used for simulation studies, e.g. in chemistry [2], systems biology
[13] or ecology [16].

Recently, Lifted Marginal Filtering (LiMa) [12, 18] was proposed, an approach
that uses a MRS to describe the state dynamics and maintains the state distri-
bution over time, which is repeatedly updated based on observations (i.e. it
performs Bayesian filtering). More specifically, the transition model of LiMa is
described in terms of a probabilistic parallel MRS (PPMRS) [1], a specific class

of MRSs that model systems where multiple entities act in parallel. This allows
to perform Bayesian filtering in scenarios where multiple entities can simulta-
neously perform activities between consecutive observations, but the order of
actions between observations is not relevant.

A multiset of actions that is executed in parallel is called compound action. In
PPRMS, each state s defines a distribution of compound actions k , p(k |s). This
distribution defines the transition distribution p(s ′|s) , where s ′ is the result of
applying k to s (called transition model in the Bayesian filtering context).

One of the computational challenges in probabilistic parallel MRSs is the
computation of p(k |s): This distribution is calculated as the normalized weight
vs(k) of the compound actions: p(k |s) = vs(k)/

∑
ki

vs(ki). To compute this
normalization factor (called partition function) exactly, it is necessary to sum
over all compound actions. Unfortunately, the number of compound actions can
be very large, due to the large number of combinations of actions that can be
applied in parallel to a state. Thus, in general, complete enumeration is infeasible.
Therefore, we are concerned with methods for approximating this distribution.

A problem closely related to computing the value of the partition function is
weighted model counting (WMC), where the goal is to find the summed weight
of all models of a weighted propositional theory (W-SAT). Exact [4] and approx-
imate [19, 7] algorithms for WMC have been proposed. However, our approach
requires to sample from the distribution p(k |s), not just compute its partition
function. For W-SAT, a method was proposed [3] to sample solutions, based on
partitioning the set of satisfying assignments into “cells”, containing equal num-
bers of satisfying assignments. The main reason why these approaches cannot
be used directly for our domain is that they assume a specific structure of the
weights (weights factorize into weights of literals), whereas in our domain, only
weights v(k) of complete samples k are available. Another related line of research
is efficiently sampling from distributions with many zeros (hard constraints) [9],
which can also be achieved by a combination of sampling and backtracking.
However, they assume that the distribution to sample from is given in factorized
form (e.g. as a graphical model).

The main technical contribution of this paper is a sampling approach for
compound actions, based on the Metropolis-Hastings algorithm. Compound ac-
tion computation can be formulated as a constraint satisfaction problem (CSP),
where each compound action is a solution of the CSP. The algorithm works by
iteratively proposing new CSP solutions, based on backtracking of the current
solution (i.e. compound action).

We will proceed as follows. In Section 2, we introduce probabilistic parallel
MRSs in more detail. The exact and approximate algorithms for computing the
compound action distribution are presented in Section 3. We present an empirical
evaluation of our approach in Section 4, showing that the transition model can
be approximated accurately for situations with thousands of entities, where the
exact algorithm is infeasible.

2 Probabilistic Parallel Multiset Rewriting

In the following, we introduce probabilistic parallel multiset rewriting systems
(PPMRSs), and show how such a system defines the state transition distribution
(also called transition model) p(St+1|St).

Such systems have previously been investigated in the context of P Systems
[15], a biologically inspired formalism based on parallel multiset rewriting across
different regions (separated by membranes). Several probabilistic variants of P
Systems have been proposed [1, 16, 5]. We present a slightly different variant
here, that does not use membranes, but structured entities (the variant that is
used in LiMa [12, 18]).

Let E be a set of entities. A multiset over E is a map s : E → N from entities
to multiplicities. We denote a multiset of entities e1, . . . , ei and their multiplic-
ities n1, . . . ,ni as J n1 e1, . . . ,ni ei K, and define multiset union s] s ′, multiset
difference s ∪- s ′, and multiset subsets s v s ′ in the obvious way. In MRSs, mul-
tisets of entities are used to represent the state of a dynamic system. Thus, in
the following, we use the terms state and multiset of entities interchangeably.

Typically, MRSs consider only flat (unstructured) entities. Here, we use
structured entities: Each entity is a map of property names K to values V, i.e. a
partial function E = K 7→ V. Structured entities are necessary for the scenarios
we are considering, as they contain entities with multiple, possibly continuous,
properties.

For example, consider the following multiset, that describes a situation in
a predator-prey model, with ten predators and six prey, each entity having a
specific age1:

J 6〈T: Prey,A: 2〉, 3〈T: Pred,A: 3〉, 7〈T: Pred,A: 5〉 K (1)

In [12], a factorized representation of such states is devised, that allows to rep-
resent state distributions more compactly. We note that the concepts presented
in the following also apply to the factorized representation, but we omit it here
for readability.

The general concept of a multiset rewriting system (MRS) is to model the sys-
tem dynamics by actions (also known as rewriting rules) that describe precon-
ditions and effects of the possible behaviors of the entities. An action is a triple
(c, e,w) consisting of a precondition list c ∈ C, an effect function e ∈ F and a
weight w ∈ R. In conventional MRSs (e.g. in the context of P Systems [1, 16, 5]),
the preconditions are typically a multiset or a list of (flat) entities. However, when
using structured entities, preconditions can be described much more concisely
as constraints on entities, i.e. as a list of boolean functions: C = [E → {>,⊥}].
For example, consider an action reproduce, that can be performed by any entity
with Age > 3, regardless of other properties of the entity, which is naturally and
concisely represented as a constraint.

The idea of applying an action to a state is to bind entities to the precondi-
tions. Specifically, one entity is bound to each element in the precondition list,

1 we use 〈·〉 to denote partial functions

and entities can only be bound when they satisfy the corresponding constraint.
The effect function then manipulates the state based on the bound entities (by
inserting, removing, or manipulating entities). We call such a binding action
instance (a, i) ∈ I, i.e. a pair consisting of an action and a list of entities. We
write a(i) for an action instance consisting of an action a and bound entities i .
Note that we use positional preconditions, i.e. the action instances eat(x,y) and
eat(y,x) are different – either x or y is eaten.

A Compound Action k ∈ K is a multiset of action istances. It is applied to a
state by composing the effects of the individual action instances. The compound
action k is applicable in a state s if all of the bound entities are present in s,
and it is maximal with respect to s if all entities in s are bound in k . Thus, a
compound action is applicable and maximal when the multiset of all the bound
entities is exactly the state s, i.e.]a(x)∈k x = s. In the following, we are only

concerned with applicable maximal compound action (AMCAs), which define
the transition model. Scenarios where agents can also choose to not participate
in any action can be modelled by introducing explicit “no-op” actions.

Compound Action Probabilities: Our system is probabilistic, which means
that each AMCA is assigned a probability. In general, any function from the
AMCAs to the positive real numbers which integrates to one is a valid definition
of these probabilities, that might be plausible for different domains. Here, we
use the probabilities that arise when each entity independently chooses which
action to participate in (which is the intended semantics for the scenarios we
are concerned with). To calculate this probability, we count the number of ways
specific entities from a state s can be chosen to be assigned to the action instances
in the compound action. This concept to calculate probabilities is closesly related
to [1] – except that due to the fact that we use positional preconditions, the
counting process is slightly different.

The multiplicity µs(k) of a compound action k with respect to a state s is
the number of ways the entities in k can be chosen from s. See Example 1 below
for an illustration of the calculation of the multiplicity.

The weight vs(k) of a compound action is the product of its multiplicity and
the actions’ weights:

vs(k) = µs(k) ∗Πiw
ni
i (2)

Here, ni is the number of action instances aii present in k . The probability of a
compound action in a state s is its normalized weight:

p(k |s) = vs(k)/
∑
ki

vs(ki) (3)

Transition Model: The distribution of the AMCAs define the distribution of
successor states, i.e. the transition model. The successor states of s are obtained
by applying all AMCAs to s. The probability of each successor state s ′ is the
sum of the probabilities of all AMCAs leading to s ′:

p(S ′=s ′|S=s) =
∑

{k |apply(k ,s)=s′}

p(k |s) (4)

Finally, the posterior state distribution is obtained by applying the transition
model to the prior state distribution, and marginalizing s (this is the standard
predict step of Bayesian filtering):

p(S ′=s ′) =
∑
s

p(S=s) p(S ′=s ′|S=s) (5)

Example 1: In a simplified population model, two types of entities exist: Prey
x = 〈Type = X 〉 and predators y = 〈Type = Y 〉. Predators can eat other animals
(prey or other predators, action e), and all animals can reproduce (action r).
Reproduction is 4 times as likely as consumption, i.e. action e has weight 1, and
r has weight 4.

For a state s = J 1x , 2y K, the following applicable action instances exist:
r(y), r(x), e(y , x), e(y , y). The resulting applicable maximal compound actions
are: k1 = J 2r(y), 1r(x) K, k2 = J 1e(y , y), 1r(x) K and k3 = J 1e(y , x), 1r(y) K.
Applying these compound actions (assuming that they have the obvious effects)
to the initial state s yields the three successor states s ′1 = J 4y , 2x K, s ′2 = J 1y , 2x K
and s ′3 = J 2y K. The multiplicities of the compound actions are µs(k1) = 1,
µs(k2) = 2, µs(k3) = 2 and their weights are vs(k1) = 1 ∗ 43 = 64, vs(k2) =
2 ∗ 1 ∗ 4 = 8 and vs(k3) = 2 ∗ 1 ∗ 4 = 8.

3 Efficient Implementation

In this section, we present the main contribution of this paper: An efficient
approximate algorithm for computing the posterior state distribution (Equation
5).

Given a prior state distribution p(S) and a set of actions A, the following
steps need to be performed for each s with p(S=s) > 0 to obtain the posterior
state distribution:

i Compute all action instances of each action a ∈ A, given s.
ii Compute all AMCAs and their probabilities (Equation 3).
iii Calculate the probabilities of the resulting successor states s ′, i.e. p(s ′|s), by

applying all AMCAs to s (Equation 4).
Afterwards, the posterior state distribution p(s ′) is obtained by weighting p(s ′|s)
with the prior p(s) and marginalizing s (Equation 5). In the following, we discuss
efficient implementations for each of these steps.

Step (i) requires, for each action (c, e,w) = a ∈ A, to enumerate all bindings
(lists of entities) that satisfy the precondition list c = [c1, . . . , cn] of this action,
i.e. the set {[e1, . . . , en] | c1(e1) ∧ . . . ∧ cn(en)}. This is straightforward, as for
each constraint, we can enumerate the satisfying entities independently. In the
scenarios we are considering, the number of actions, as well as the number of
different entities in each state is small (see Example 1). Furthermore, we only
consider constraints that can be decided in constant time (e.g. comparisons with
constants). Thus, we expect this step to be sufficiently fast.

Steps (ii) and (iii) are, however, computationally demanding, due to the
large number of compound actions: Given a state s, let n be the total number

of entities in s and i be the number of action instances. The number of possible

compound actions is at most the multiset coefficient
((

i
n

))
= (i+n−1)!

n! (i−1)! .

Therefore, in the following, we focus on the efficient computation of p(K |s).
We start with an exact algorithm that enumerates all AMCAs, and, based on
that, derive a sampling-based algorithm that approximates p(K |s).

In the context of other PPMRSs, efficient implementations for computing
p(K |s) have not been discussed. Either, they use a semantics that allows to
sample a compound action by sequentially sampling the individual actions2 [16],
or they use a semantics similar to ours (requiring to enumerate all compound
actions), but are not concerned with an efficient implementation [1, 5].

3.1 Exact Algorithm

The task we have to solve is the following: Given a set of action instances
(a, i) ∈ I and a state s, compute the distribution p(K |s) of the compound
actions that are applicable and maximal with respect to s (the AMCAs), as
shown in Equation 3. To compute the partition function of this distribution ex-
actly, it is necessary enumerate all AMCAs and their weights. Thus, the exact
algorithm works as follows: First, all AMCAs are enumerated, which then allows
to compute the partition function and thus p(K |s).

In the following, we show how the AMCA calculation problem can be trans-
formed into a constraint satisfaction problem (CSP) Γ , such that each solution
of the CSP is an AMCA, and vice versa. Then, we only need to compute all
solutions of Γ , e.g. by exhaustive search.

A CSP Γ is a triple (X ,D ,C) where X is a set of variables, D is a set
of domains (one for each variable), and C is a set of constraints, i.e. boolean
functions of subsets of X . Given action instances I and a state s, a CSP Γ is
constructed as follows:
– For each action instance (a, i) ∈ I , there is a variable x ∈ X . The domain

of x is {0, . . . ,min
e∈i

(ne)}, where ne is the multiplicity of entity e in s.

– For each entity e ∈ s with multiplicity ne in s, there is a constraint c ∈
C on all variables xi whose corresponding action instances ai bind e. Let
mi,e the number of times the action instance ai binds e. The constraint
then is

∑
i me,i = ne . This models the applicability and maximality of the

compound actions.
Note that the constraint language consists only of summation and equality, in-
dependently of the constraint language of action preconditions (which have been
resolved before, when computing action instances).

A solution σ of Γ is an assignment of all variables in X that satisfies all
constraints. Each solution σ of Γ corresponds to a compound action k : The
value σ(x) of a variable x indicates the multiplicity of the corresponding action
instance (a, i) in k . Each solution σ corresponds to an applicable and maximal

2 Due to the sequential sampling process, the probability of a compound action is
higher when there are more possible permutations of the individual actions, which
is explicitly avoided by our approach.

r(x)=2, r(y)=2 r(y)≥2

r(x)≥1, r(y)≥1

r(x)≥2

Γ'd

r(x)=2, r(y)=2

r(x)=1, r(y)=1
e(y,x)=1

r(x)=2, r(y)=2

r(x)=2, r(y)=2

D'

Fig. 1: Left: The CSP for Example 1. Circles represent variables, rectangles rep-
resent constraints. Right: Illustration of the proposal function, using the CSP of
Figure 1 and the solution d = (r(x) = 2, r(y) = 2). Equalities represent assign-
ments in the solution, and inequalities represent constraints. Assignments and
constraints with 0 are not shown.

compound action (as this is directly enforced by the constraints of Γ), and
each AMCA is a solution of Γ . Figure 1 (left) shows the CSP corresponding to
Example 1.

We use standard backtracking to enumerate all solutions of the CSP3. Af-
terwards, the weight of each solution (and thus the partition function) can be
calculated.

Note that the CSP we are considering is not an instance of a valued (or
weighted) CSP [6, 17]: They assume that each satisfied constraint has a value,
and the goal is to find the optimal variable assignment, whereas in our proposal,
only solutions have a value, and we are interested the distribution of solutions.

3.2 Approximate Algorithm

The exact algorithm has a linear time complexity in the number of AMCAs (i.e.
solutions of Γ). However, due to the potentially very large number of AMCAs,
enumerating all solutions of Γ is infeasible in many scenarios.

We propose to solve this problem by sampling CSP solutions instead of enu-
merating all of them. However, sampling directly is difficult: To compute the
probability of a solution (Equation 3), we first need to compute the partition
function, which requires a complete enumeration of the solutions.

Metropolis-Hastings-Algorithm: Markov chain Monte Carlo (MCMC) al-
gorithms like the Metropolis-Hastings algorithm provide an efficient sampling
mechanism for such cases, where we can directly calculate a value v(k) that is
proportional to the probability of k , but obtaining the normalization factor (the
partition function) is difficult. The Metropolis-Hastings algorithm works by con-
structing a Markov chain of samplesM = k0, k1, . . . that has p(K) as its station-
ary distribution. The samples are produced iteratively by employing a proposal

3 This is sufficient, as the problem here is not that finding each solution is difficult,
but that there are factorially many solutions.

distribution g(k ′|k) that proposes a move to the next sample k ′, given the current
sample k . The proposed sample is either accepted and used as the current sample
for the next iteration, or rejected and the previous sample is kept. The acceptance
probability is calculated as A(k , k ′) = min{1, (v(k ′) g(k |k ′))/(v(k) g(k ′|k))}. It
can be shown that the Markov chain constructed this way does indeed have the
target distribution p(K) (Equation 3) as its stationary distribution [10]. The
Metropolis-Hastings algorithm thus is a random walk in the sample space (in
our case, the space of AMCAs, or equivalently, solutions of Γ) with the prop-
erty that each sample is visited with a frequency relative to its probability. The
Metropolis-Hastings sampler performs the following steps at time t + 1:

1. Propose a new sample k ′ by sampling from g(k ′|kt).
2. Let kt+1 = k ′ with probability A(k ′, kt).
3. Otherwise, let kt+1 = kt .

Proposal Function: In the following, we present a proposal function of com-
pound actions. The idea is to perform local moves in the space of the compound
actions as follows: The proposal function g(k ′|k) proposes k ′ by randomly select-
ing n action instances to delete from k , and sample one of the possible comple-
tions of the remaining (non-maximal) compound action. This means the proposal
makes small changes to k for proposing k ′, while ensuring that k ′ is applicable
and maximal.

The proposal function can be formulated equivalently when viewing com-
pound actions as CSP solutions. For a CSP solution σ, “removing” a single
action instance is done by removing the assignment of the corresponding vari-
able in σ, and “remembering” the previous value of the variable as a constraint,
relaxed by 1: Suppose that we want to remove an action instance corresponding
to the CSP variable x , and the solution contains the assignment x = v . We do
this by removing the assignment, and adding x ≥ v − 1 as a constraint. This
is done randomly for n variables of the CSP. Similarly, for all other variables,
we add constraints x ≥ v to capture the fact that the remaining CSP can have
solutions where these variables have a higher value. In Algorithm 1, a procedure
is shown that enumerates all CSPs that can be obtained this way. From the
resulting CSPs, one CSP Γ ′ is sampled uniformly, and then a solution σ′ of Γ ′

is sampled (also uniformly). Notice that each of these CSPs is much easier to
solve by backtracking search than the original CSP, as the solution space is much
smaller. The proposal function is shown in Algorithm 1.

For example, consider the CSP corresponding to Example 1 (Figure 1 left)
and the solution d = (r(x) = 2, r(y) = 2, e(y , y) = 0, e(y , x) = 0). Suppose we
want to remove n = 2 action instances. This results in three possible reduced
CSPs: Either two r(x), two r(y) or one r(x) and one r(y) are removed. The CSPs,
and the possible solutions of each CSP are shown in Figure 1 (right).

Probability of a Step: We do not only need to sample a value from g , given
σ (as implemented in Algorithm 1), but for the acceptance probability, we also
need to calculate the probability of g(σ′|σ), given σ′ and σ. This is implemented
by Algorithm 2. The general idea is to follow all possible choices of removed
action instances, and count the number of choices that lead to σ′. In Algorithm

Algorithm 1 Proposal function

1: function g(Γ ,σ,n)
2: Γ ′ ← uniform(reducedCSPs(Γ ,σ,n))
3: σ′ ← uniform(enumSolutions(Γ ′)) . Enumerate solutions of Γ ′, sample one
4: return σ′

5: end function
6: function reducedCSPs(Γ = (X ,D ,C),σ,n)
7: for each xi , add constraint xi ≥ di to C
8: R ← set of all combinations with repetitions of variables in X with exactly n

elements, where xi occurs at most σ(xi) times
9: for r ∈ R do

10: C ′ ← same constraints as in C , but ∀ x ∈ X : replace x ≥ v by x ≥ v−x#r4

11: G ← G ∪ (X ,D ,C ′) . Collect all reduced CSPs
12: end for
13: return (G)
14: end function

Algorithm 2 Probability of a step of the proposal function

1: function gProb(σ′,σ,Γ ,n)
2: ∀ x : rem(x) ← max(0, σ′(x)− σ(x)) . Variable assignments that need to be

reduced to get from σ to σ′.
3: G ← {Γ ′ ∈ reducedCSPs(Γ, σ,n) | reductions that reduce each variable x at

least rem(x) times} . Reduced CSPs that have d ′ as a solution
4: ∀Γ ′ ∈ G : nΓ ′ ← | enumCSP(Γ ′) | . Number of CSP solutions for each Γ ′

5: t ← | reducedCSPs(Γ, σ,n) | . Total number of ways to reduce the CSP
6: p ← 1/t

∑
Γ ′∈R 1/nΓ ′ . Calculate probability that σ′ is sampled

7: return p
8: end function

1, two random choices are performed: (i) Choosing one of the reduced CSPs Γ ′,
and (ii) choosing one of the solutions of Γ ′. In both cases, a uniform distribution
is used. Therefore, it is sufficient to know the number of elements to choose from.
Furthermore, only need to compute the solutions for those CSPs Γ ′ where σ′

can be reached. Both considerations are exploited by Algorithm 2, leading to an
increased efficiency.

Figure 1 (right) illustrates these ideas. Suppose the dark grey path has been
chosen by the proposal function. The function gProb(σ′, σ, Γ, 2) then only has to
compute the solutions of the single CSP Γ ′ in the dark grey path, as it is the only
CSP that has σ′ as a solution. The probability is calculated as gProb(σ′, σ, Γ, 2) =
1/3 ∗ 1/2 = 1/6.

4 x#r denotes the number occurences of x in r

4 Experimental Evaluation

In this section, we investigate the performance of the approximate compound
action computation algorithm in terms of computation time and accuracy by
simulating a variant of a probabilistic Lotka-Volterra model that has a compound
action semantics.

4.1 Experimental Design

The Lotka-Volterra model is originally a pair of nonlinear differential equations
describing the population dynamics of predator (y) and prey (x) populations
[11]. Such predator-prey systems can be modeled as a MRS [16, 8].

In contrast to previous approaches, we use a maximally parallel MRS to
model the system, i.e. in our approach, multiple actions (reproduction and con-
sumption) can occur between consecutive time steps. We introduce explicit no-op
actions to allow entities to not participate in any action. Modeling the system
like this can, for example, be beneficial for Bayesian filtering, where between
observations (e.g. a survey of population numbers), a large number of actions
can occur, but their order is not relevant. Figure 2 (left) shows an example of
the development of the system over time, as modeled by our approach. It shows
the expected behavior of stochastic Lotka-Volterra systems: Oscillations that
become larger over time [14].

We compare the exact and approximate algorithms by computing the com-
pound action distribution for a single state s of the predator-prey model, i.e.
p(K |s). We vary the number of predator and prey entities in s (2, 3, 5, 7, 15, 20,
25, 30, 40, 50, 60, 70) as well as the number of samples drawn by the approximate
algorithm (1, . . . , 30000).

The convergence of the approximate algorithm is assessed using the total
variation distance (TVD). Let p be the true distribution, and let qn be the
distribution of the approximate algorithm after drawing n samples. The TVD is
then

∆(n) = 1/2
∑
s

| p(s)− qn(s) |

The mixing time τ(ε) measures how many samples need to be drawn until the
TVD falls below a threshold ε:

τ(ε) = min{t | ∆(n) ≤ ε for all n ≥ t}

We assess the TVD and mixing time of (i) the compound action distribution,
and (ii) of the state transition distribution. The rationale here is that ultimately,
only the successor state distribution is relevant, but assessing the TVD and
mixing time of the compound action distribution allows further insight into the
algorithm.

1000

1500

2000

0 50 100 150 200

Time

In
di

vi
du

al
s

Type prey predators

0

50

100

150

200

0 20 40 60
size

T
im

e
(s

)

algorithm approximate exact

Fig. 2: Left: Sample trajectory, each state transition is obtained by calculating
the compound action distribution using the approximate algorithm with 10,000
samples, and then sampling and executing one of the compound actions. Right:
Runtime of the algorithms, using constant number of 10,000 samples.

4.2 Results

Figure 2 (right) shows the runtime of the exact and approximate algorithm
(with a fixed number of 10,000 samples) for different numbers of entities in s.
The exact algorithm is faster for states with only few entities, as solutions of only
a single CSP are enumerated, whereas the approximate algorithm enumerates
solutions for 10,000 CSPs (although each of those CSPs has only few solutions).
However, the runtime of the approximate algorithm does not depend on the
number of entities in s at all, as long as the number of samples stays constant
(but approximation quality will decrease, as investigated later). In our scenario,
the approximate algorithm is faster for states consisting of 40 or more predator
and prey entities.

The difference between the exact and approximate compound action distri-
bution p(K |s) in terms of TVD is shown in Figure 3 (left). When more samples
are drawn by the approximate algorithm, the TVD converges to zero, as ex-
pected (implying that the approximate algorithm works correctly). Naturally,
the TVD converges slower for states with more entities (due to the much larger
number of compound actions).

Eventually, we are interested in an accurate approximation of the distribution
p(S ′|s). Figure 3 (middle) shows that this distribution can be approximated more
accurately than p(K |s): For a state with 70 predator and prey entities (with
more than 9 million compound actions), the approximate transition model is
reasonably accurate (successor state TVD < 0.1) after drawing 10,000 samples.
Even more, Figure 2 (left) suggests that this approximation is still reasonable for
states with more than 2,000 entities – as we still observe the expected qualitative
behavior.

Figure 3 (right) shows the empirical mixing time of p(S ′|s). The mixing time
grows approximately linear in the number of entities in the state. This suggests
that to achieve the same accuracy of the approximation, the runtime of the

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000
steps

T
V

D

size 7 40 70

p(k)

0.00

0.25

0.50

0.75

1.00

0 10000 20000 30000
steps

T
V

D

size 7 40 70

p(s')

0

3000

6000

9000

12000

0 20 40 60
size

st
ep

s

epsilon 0.1 0.25 0.5

Mixing time for p(s')

Fig. 3: TVD of p(K |s) (left) and p(S ′|s) (middle) for different numbers of sam-
ples and for states with different number of entities. Right: Empirical mixing
time of p(S ′|s), indicating that a linear increase in samples (and thus, runtime)
of the approximate algorithm is sufficient to achieve the same approximation
quality.

approximate algorithm only has to grow linearly – as compared to the exact
algorithm, which has a factorial runtime.

Thus, using the approximate algorithm, it is possible to accurately calculate
the successor state distribution, for situations with a large number of entities,
even when the exact algorithm is infeasible.

5 Conclusion

In this paper, we investigated the problem of efficiently computing the com-
pound action distribution (and thus, the state transition distribution, or tran-
sition model) of a probabilistic parallel Multiset Rewriting System (PPMRS)
– which is required when performing Bayesian filtering (BF) in PPMRSs. We
showed that computing the transition model exactly is infeasible in general (due
to the factorial number of compound actions), and provided an approximation
algorithm based on MCMC methods. This strategy allows to sample from the
compound action distribution, and is therefore also useful for simulation studies
that employ PPMRSs. Our empirical results show that the approach allows BF
in cases where computing the exact transition model is infeasible – where the
state contains thousands of entities.

Future work includes applying the approach to BF tasks with real-world
sensor data, e.g. for human activity recognition. It may also be worthwhile to
further investigate the general framework developed in this paper – approxi-
mating the solution distribution of a CSP that has probabilistic (or weighted)
solutions – and see whether it is useful for other problems beyond compound
action computation.

References

1. Barbuti, R., Levi, F., Milazzo, P., Scatena, G.: Maximally Parallel Probabilistic
Semantics for Multiset Rewriting. Fundamenta Informaticae 112(1), 1–17 (2011)

2. Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer Sci-
ence 96(1), 217–248 (1992), http://portal.acm.org/citation.cfm?doid=96709.96717

3. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-
aware sampling and weighted model counting for sat. In: AAAI. vol. 14, pp. 1722–
1730 (2014)

4. Chavira, M., Darwiche, A.: On probabilistic inference by weighted model counting.
Artificial Intelligence 172(6-7), 772–799 (2008)

5. Ciobanu, G., Cornacel, L.: Probabilistic transitions for P systems. Progress in
Natural Science 17(4), 432–441 (2007)

6. Cooper, M., de Givry, S., Sanchez, M., Schiex, T., Zytnicki, M., Werner,
T.: Soft arc consistency revisited. Artificial Intelligence 174, 449–478 (2010),
http://linkinghub.elsevier.com/retrieve/pii/S0004370210000147

7. Ermon, S., Gomes, C., Sabharwal, A., Selman, B.: Taming the curse of dimensional-
ity: Discrete integration by hashing and optimization. In: International Conference
on Machine Learning. pp. 334–342 (2013)

8. Giavitto, J.L., Michel, O.: Mgs: A rule-based programming language for complex
objects and collections. Electronic Notes in Theoretical Computer Science 59(4),
286–304 (2001)

9. Gogate, V., Dechter, R.: Samplesearch: Importance sampling in presence of deter-
minism. Artificial Intelligence 175(2), 694–729 (2011)

10. Häggström, O.: Finite Markov chains and algorithmic applications, vol. 52. Cam-
bridge University Press (2002)

11. Lotka, A.J.: Analytical Theory of Biological Populations. Springer Science & Busi-
ness Media (1998)

12. Lüdtke, S., Schröder, M., Bader, S., Kersting, K., Kirste, T.: Lifted
Filtering via Exchangeable Decomposition. ArXiv e-prints (2018),
https://arxiv.org/abs/1801.10495

13. Oury, N., Plotkin, G.: Multi-level modelling via stochastic multi-level multiset
rewriting. Mathematical Structures in Computer Science 23, 471–503 (2013)

14. Parker, M., Kamenev, A.: Extinction in the Lotka-Volterra model. Physical Review
E 80(2) (2009), https://link.aps.org/doi/10.1103/PhysRevE.80.021129

15. Paun, G.: Membrane Computing: An Introduction. Springer Science & Business
Media (2012)

16. Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P sys-
tems. International Journal of Foundations of Computer Science 17(01), 183–204
(2006)

17. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: Hard
and easy problems. In: Procedings of the International Joint Conference on Arti-
ficial Intelligence (1995)

18. Schröder, M., Lüdtke, S., Bader, S., Krüger, F., Kirste, T.: LiMa: Sequential Lifted
Marginal Filtering on Multiset State Descriptions. In: KI 2017: Advances in Arti-
ficial Intelligence. Springer International Publishing AG (2017)

19. Wei, W., Selman, B.: A new approach to model counting. In: International Con-
ference on Theory and Applications of Satisfiability Testing. pp. 324–339. Springer
(2005)

