
LiMa: Sequential Lifted Marginal Filtering on
Multiset State Descriptions

Max Schröder, Stefan Lüdtke, Sebastian Bader,
Frank Krüger and Thomas Kirste

Mobile Multimedia Information Systems Group, Institute of Computer Science
University of Rostock, 18051 Rostock, Germany

{max.schroeder, stefan.luedtke2, sebastian.bader, frank.krueger2,

thomas.kirste}@uni-rostock.de

Abstract. Maintaining the a-posteriori distribution of categorical states
given a sequence of noisy and ambiguous observations, e. g. sensor data,
can lead to situations where one observation can correspond to a large
number of different states. We call these states symmetrical as they can-
not be distinguished given the observation. Considering each of them
during the inference is computationally infeasible, even for small scenar-
ios. However, the number of situations (called hypotheses) can be reduced
by abstracting from particular ones and representing all symmetrical
in a single abstract state. We propose a novel Bayesian Filtering algo-
rithm that performs this abstraction. The algorithm that we call Lifted
Marginal Filtering (LiMa) is inspired by Lifted Inference and combines
techniques known from Computational State Space Models and Multiset
Rewriting Systems to perform efficient sequential inference on a para-
metric multiset state description. We demonstrate that our approach is
working by comparing LiMa with conventional filtering.

1 Introduction

Maintaining the a-posteriori distribution of categorical states given a sequence
of noisy and ambiguous observations, e. g. sensor data, can lead to situations
where one observation can correspond to a large number of different states.
For example, when tracking persons based on anonymous presence sensors, we
do not know which concrete person corresponds to which observation (track)
[9, 25, 11]. We call such persons (more general entities) observation equivalent,
i. e. they cannot be distinguished, based on the current observation. Thus, the
number of states that need to be considered can grow very large, even for small
scenarios. For example, when tracking the location and movement of 6 persons in
10 rooms, there are already 106 possible states. Even though this is a theoretical
number of states, also the states that actually need to be tracked and cannot be
precluded given the observation (also called hypotheses) is large. Thus, inference
quickly becomes infeasible for real-world sized domains due to the combinatorial
explosion with respect to the number of hypotheses that need to be tracked.

Several approaches exists that try to exploit such symmetries. Approaches
that abstract from the identity of the entities [11, 16] cannot be used, because



identifying observations might reveal the correspondence between some of the
tracks and some of the identities. Additionally, in order to answer application
specific questions, we might need the identity of entities. Such scenarios require
an inference algorithm that can represent observation equivalent entities as a
group, thus compactly representing states that are different but cannot be dis-
tinguished given the sensor data. However, this approach must also be able to
break symmetries, i. e. split groups, when indicated by observations. Recently,
Lifted Inference [18, 12, 23] showed that inference in graphical models can be
performed on a first-order level, by reasoning over equivalent random variables
as a group. However, none of these approaches allows to recursively compute
the a-posteriori distribution, which is necessary when the complete observation
sequence is not known in advance such as when using real world sensor data.

We propose a novel filtering algorithm that can compactly represent sym-
metrical states. It employs a multiset state representation that allows to group
observation equivalent entities. This abstract state representation is embedded in
the Bayesian Filtering framework in order to recursively compute the a-posteriori
state distribution. For this purpose, the next belief state according to a transi-
tion model is predicted followed by an update of the probabilities according to an
observation model that takes the current observation into account. This allows
us to reason over them as a group, leading to a more compact belief state and a
much more efficient filtering algorithm. To exemplify our approach, we will use
the following office scenario [22] as a running example throughout the paper:

Example 1 [Office scenario] Up to six agents are in an office building with five
rooms and a hall connecting the rooms. There are also two coffee machines and
ten coffee capsules in a storage. Agents can walk between the rooms and take a
capsule from the storage, respectively, replenish the coffee machine. If a capsule
is inserted in the coffee machine, agents can take a coffee. All rooms contain
presence sensors that detect if at least one agent is present. Our goal is to track
the current state (positions of agents, items the agents are carrying as well as
the number of capsules left and the state of the coffee machine etc.) based on
sequences of presence sensor data.

The agents in this scenario are observation equivalent, as they cannot be dis-
tinguished given the presence sensor data. Although this scenario is a specific
instance, the underlying problem is more general and can be found in many simi-
lar scenarios involving multiple observation equivalent entities acting in parallel.
Note that this scenario requires modeling of entities along with their properties
and thus cannot be solved by considering the number of entities only.

In Section 2, we introduce basic concepts that lay the foundations for our
novel inference approach. The inference approach itself is described in Section 3.
Section 4 evaluates the inference mechanism and Section 5 presents connections
to other methods and related work. We finish this paper with our conclusion
and a description of our future work in Section 6.



2 Preliminaries

In the following, we will give a brief overview of two concepts our approach is
based on. Computational State Space Models allow Bayesian Filtering in a state
space described by precondition-effect actions. Multiset Rewriting Systems offer
a formalism for compactly representing states with multiple equivalent entities.

Computational State Space Models (CSSMs) allow the knowledge-based con-
struction of state spaces for Bayesian Filtering. They are for instance used for
human behavior and goal recognition [2, 19]. The transition model is described
by a computable function by means of preconditions and effects. This allows
the compact representation of potentially infinite state spaces by avoiding ex-
plicit state enumeration. Standard methods for Bayesian Filtering (e. g. Particle
Filtering) is used to estimate the most likely state sequence.

CSSMs allow to handle large, even infinite, state spaces [17]. However, CSSMs
perform inference in grounded state spaces (i. e. concrete values are assigned to
all state variables). For representing observation equivalent states, this means
the approach needs to track all of the different observation equivalent states
individually, leading to a combinatorial explosion.

Multiset Rewriting Systems (MRSs) are an established formalism for mod-
eling systems with many equal objects. They are for instance used to model
chemical reactions happening in a solution [4] or cell interactions [5]. The state
of such a system is described as a multiset of entities, where each entity is an
instance of one of finitely many species. The reactions between entities are mod-
eled as multiset rewriting rules that have preconditions (a multiset of entities
that are consumed by the reaction) and effects (a multiset of entities that are
created by the reaction). Under the probabilistic maximally parallel semantics
[3], a maximal set of applicable rules (a compound rule) is applied in parallel.
Each rule is assigned a rate, which defines the probability of a compound rule.

We are interested in MRS because they allow an abstract representation of
states with multiple, equivalent entities. However, Bayesian Filtering algorithms
for MRSs that incorporate observations have not yet been devised.

3 LiMa: Lifted Marginal Filtering

In the following, we present our approach that performs Bayesian Filtering using
a multiset-based state representation. Our concept of Bayesian Filtering in state
spaces described by precondition-effect actions is based on CSSMs (cf. Section 2).
The state space representation is inspired by MRSs, which enable a compact
representation of multiple equivalent states.

This section aims at giving a comprehensive overview of our Lifted Marginal
Filtering approach. The next section is concerned with the question how states
can be formalized in an abstract manner to represent multiple observation equiv-
alent situations (Section 3.1). Section 3.2 extends this abstract representation
to be capable of expressing uncertainty. The efficient manipulation of this un-
certain abstract representation regarding a model of the system’s dynamics is



introduced in Section 3.3. Section 3.4 describes how observations can be taken
into account to perform a complete Bayesian Filtering cycle. As Bayesian Fil-
tering is used to answer application specific questions, in particular questions
about the activity of the entities, we discuss how this can be performed in LiMa
in Section 3.5.

3.1 Abstract State Description

Similar to MRS, we model a state as a multiset of entities with certain properties,
e. g. objects or persons, that are part of a situation. Such entities often have many
properties in common, but some properties with different values. For example,
two persons may both be at the same location and both holding nothing in their
hands, but having different names. In MRSs, these two persons are considered
a different species. Thus, inference in MRS with many entities that are not
exactly equal leads to a combinatorial explosion in the number of species. This
combinatorial explosion can be avoided by extending the multiset representation
to be able to group entities that are similar, but not equal.

For this purpose, our state space representation separates the structure of the
entities from the actual property values of these entities, allowing us to group
entities with similar structure, but different property values. While the number
as well as the structure of entities is maintained in what we call a state formula,
the possibly uncertain property values are maintained in the context. The con-
text contains representations of densities1 encoding the uncertainty respectively
certainty over the entity properties. It is connected to the structure via density
labels. Our inference algorithm manipulates the structure (the state formula),
as well as these representations. Below, we introduce the concepts of entities,
state formulae and contexts in detail including examples referring to the office
scenario (Section 1).

An entity is a finite map of property names (called slots) to density labels.
These density labels are used as a “name” for the possibly uncertain property
values in the form of density representations that are later defined in the context.

Example 2 Let E be an entity that models agents with three slots Location, Holds
and Name, with E(Location) = LHall , E(Holds) = LNil and E(Name) = LNames.
We represent the entity as E = 〈Location: LHall ,Holds: LNil ,Name: LNames〉.

Multiple entities involved within a scenario are encoded using multisets2 such
that multiple similar entities are grouped together: Let E := {E1, E2, . . . , En} be
entities and let i1, . . . , in be natural numbers. A state formula over E is defined as
a multiset over E . We use J i1E1, i2E2, . . . , inEn K to represent multisets of entities
with corresponding cardinalities.

1 We use the term density to refer to densities over continuous domains as well as
probability distributions over finite domains.

2 A multiset over some set S is defined as a partial map from S to N. We use
Jn1s1,n2ss ,n3s3 K to denote the multiset containing s1, s2 and s3 with the corre-
sponding cardinalities. We use M(S) to refer to the set of all multisets over S .



Example 3 The situation in which 5 agents are located in the hall and another
agent is located in room A can be represented as a state formula φ as follows:

φ = J 5〈Location: LHall ,Holds: LNil ,Name: LNames〉,
1〈Location: LRoomA,Holds: LNil ,Name: LNames〉 K

After modeling the structure as well as the number of entities, the actual
property values are to be defined. The state formula is connected to the corre-
sponding context that encodes the actual property values via density labels: A
context is a finite map from density labels to density representations.

Below, we assume that, given a representation r of a density function d ,
there exists an algorithm Split, which accepts r and a value v as input and
returns a representation r ′ of a density d ′ that is the result of removing v from
d . We furthermore assume an algorithm Likelihood, which accepts r and a
value v as input and returns the likelihood of v with respect to d . For example,
let r = U(a, b, c) represent a finite urn containing the items a, b and c, then
Split(r , a) must return the representation of an urn containing b and c, and
Likelihood(r , v) will give 1/3 for each item.

A context γ is called valid wrt. a given state formula φ , if and only if for
all density labels occurring in φ there exists a density representation in γ and
all density representations occurring in γ are referenced within φ. Furthermore,
every density function d encoded in the context γ must be able to be split using
Split at least as many times as the sum of the cardinalities of the entities
referencing this density. As an example, a context that connects LNames to an
urn with three values only is not valid for the state formula as in Example 3,
because the density is referenced six times.

In the example below, we use δ(x ) to represent a density function which
is non-zero for x only (i. e. we use δ(x ) to refer to Dirac delta for continuous
domains and the Kronecker delta for finite domains), we call δ(x ) to be a single-
ton distribution. Note that singleton distributions cannot be split according to
Split and instead returns the same distribution. U is used to represent a finite
urn as described above. Note that when using the δ(x ) density, we might draw
x multiple times compared to U(x ).

Example 4 Let two contexts γ1 and γ2 be defined as follows and let φ be the
state formula as in Example 3, then γ1 is not valid whereas γ2 is valid for φ .

γ1 = {LHall 7→ δ(hall),LNil 7→ δ(nil),LNames 7→ U(a, . . . , f) }
γ2 = γ1 ∪ {LRoomA 7→ δ(roomA) }.

Below we assume all contexts to be valid contexts. A pair φγ of state formula
φ and valid context γ is called a lifted state. Note that by using this representation
we assume all densities in the context to be independent from each other.

Example 5 The two situations (a) six agents are in the hall, and (b) five are
in the hall and the sixth is in room A can be modeled as lifted state s1 and s2



as follows:

s1 = J 6〈Location: LHall ,Holds: LNil ,Name: LNames〉 Kγ1
s2 = J 5〈Location: LHall ,Holds: LNil ,Name: LNames〉,

1〈Location: LRoomA,Holds: LNil ,Name: LNames〉 Kγ2

Note that representing s2 in conventional grounded approaches would require to
track at least six different hypotheses, namely agent a, b, c, d , e, or f being in
room A. In our formalization, however, these situations are encoded using the
single hypothesis s2.

This formalism allows to represent multiple observation equivalent states as
a single lifted state. Note that additional to the connection of MRS this repre-
sentation employs Rao-Blackwellization: Some aspects of the state are described
explicitly (via the state formula), while some aspects have a parametric repre-
sentation (via the context).

3.2 Handling Uncertainty over Lifted States

Lifted states enable the modeling of groups of situations, i. e. groups of con-
ventional states. However, as there are several sources of noise (observations,
non-deterministic actions, ...), we will consider not just a single lifted state, but
a probability distribution over lifted states as CSSMs maintain a probability dis-
tribution over grounded states. We call this probability distribution lifted belief
state.

Before introducing it in detail, we define the concepts of grounded states:
A ground state is a lifted state if and only if its context consists of singleton
distributions only. Ground states correspond to the states used in conventional
Bayesian Filtering: Each ground state represents a specific situation, while a
lifted state in general represents a set of situations. We call this set of situations
state instances, i. e. the state instances are the set of ground states that are
subsumed under a lifted state. Note that this set is infinite if one of the underlying
densities has an infinite domain.

A probability distribution over lifted states, called lifted belief state, thus
specifies a probability distribution over sets of grounded states. We will use lifted
belief states to represent the current set of hypotheses while tracking activities
based on noisy observations.

Example 6 Let S = {s1, s2} with s1 and s2 be as given in Example 5. Let
b(s1) = 0.75 and b(s2) = 0.25. Then b is a belief state over S . Below we will
use the following notation to describe belief states: b = {0.75× s1, 0.25× s2}. b
describes the situations in which with probability 0.75 all six agents are in the
hall, and with probability 0.25 one of them is in room A.

3.3 Abstract State Dynamics

After describing how states can be modeled in an abstract manner (cf. lifted
states) and how uncertainty about the actual state can be represented (cf. lifted



belief state), in this section, we describe how the dynamics of the system is
modeled and how the representation is manipulated efficiently. This corresponds
to the predict step of Bayesian Filtering. We call the function that maps a lifted
belief state to a successor lifted belief state the transition model.

We use precondition-effect actions to model the dynamics of the system. The
transition model is a parallel execution of multiple actions that are all applicable
in the current state, similar to MRSs.

An action maps a set of entities satisfying the precondition (specific slots and
slot values) to a new set of entities. These new entities are obtained by removing
entities, by creating new ones, or by modifying entities (updating slot values,
removing slots or adding slots). Before defining actions, we introduce a notion
of slot and entity constraints:

Slot constraints check if a single value satisfies a condition. That is, slot
constraints are Boolean functions of slot values indicating whether the condition
is satisfied. We denote such functions as sc := λ v 7→ v ≡ vtest. v is the property
value to be evaluated and v ≡ vtest is a Boolean expression of the property value,
e. g. a test for (in)equality wrt. a given value, or set membership of simply the
constant function true and false.

Multiple slot constraints then are combined in an entity constraint that maps
slot names on slot constraints. Thus, an entity satisfies an entity constraint if:
(1) the entity possesses all slots that are connected to a slot constraint, and
(2) all slot constraints are satisfied. Note that considering the corresponding
context may be necessary to decide on the satisfaction of slot constraints.

Example 7 Let sch := (λ v 7→ v ≡ hall) be the slot constraint testing if the
given slot value v is identical to the value ‘hall ’, sc> := (λ v 7→ >) be the slot
constraint used to ensure the presence of a given slot. Then ec1 = {Location 7→
sch} is an entity constraint, satisfied by all entities and corresponding contexts
with a slot Location whose value is hall , and ec2 = {Name 7→ sc>} is satisfied by
all entities which posses the slot Name.

As mentioned above, actions can modify the set of entities. A function trans-
forming an entity into a new one is called entity update function. Possible entity
update functions include the addition of new slots, the update of slot values or
the removal of slots. These operations always include the modification of the cor-
responding context γ. However, for ease of understanding, we omit to mention
that the context has always to be updated accordingly. I. e. given an entity E ,
we use E{s 7→ v} to refer to the entity which results by setting the slot s to the
value v (i.e., addition or update of s), and we use E{−s} to refer to the entity
obtained by removing slot s.

The effects of an action are specified by an effect function mapping a tuple
of entities to a multiset of entities. This multiset can contain new entities, and
entities resulting from performing entity update functions on the original entities.
An action schema is the specification of an action, consisting of (1) a name, (2) a
sequence of entity constraints π (preconditions), and (3) an effect function ε.



Example 8 For ec1 as in Ex. 7, the schema (‘H2A’, [ec1], (E) 7→ J 1E{Location 7→
RoomA} K) captures the movement from the hall to room A.

An action is applicable in a given lifted state if and only if the state contains
entities which satisfy the actions preconditions. However, if a lifted state contains
an entity possessing all slots required by the entity constraint but with a non-
singleton distribution in one of these slots, we cannot decide whether the entity
satisfies the precondition. In this case, we split the corresponding lifted state into
two lifted states: One where the precondition is satisfied, and one which contains
all other grounded states that are instances of the original lifted states. Note
the similarity to splitting in Lifted Inference [18]. These splits also involve the
modification of the context as the densities encoding the uncertainty regarding
the preconditions will be split (using Split) into two densities to remove the
uncertainty. This does not necessarily require a complete grounding of the state,
but only as far as needed to decide on the preconditions.

Example 9 Let act = (‘H2A’, πact , (E) 7→ J 1E{Location 7→ RoomA} K) be an
action schema, and πact = [{Location 7→ sch ,Name 7→ sca}] be the corresponding
precondition. Let sch := (λ v 7→ v ≡ hall) and sca = (λ v 7→ v ≡ a) be the
corresponding slot constraints. Then, act encodes the move action from the hall
to room A performed by the agent named a. Considering the lifted state s2 as
in Example 5, there is no entity that already satisfies the action’s preconditions.
However, there is an entity in s2 that is more general so that a modified version
of this entity would satisfy the preconditions πact . Thus, the lifted state can be
split according to this entity on slot Name into the two lifted states: (1) a is at
room A and the other agents are in the hall (satisfying the preconditions), and
(2) a is at the hall, one of the other agents is in room A and the remaining
are in the hall, too (not satisfying the preconditions). These splits include the
modification of the context: the urn representation U(a, . . . , f) will be converted
into U(b, . . . , f) and another density representation δ(a) will be inserted.

Splits, thus, can be used to ensure satisfaction of preconditions of an action
schema. An action schema a together with a sequence of entities e satisfying the
precondition is called an action instance. The entities in e are consumed while
applying the action and replaced by the effect. I.e., the resulting state can in
principle be computed by s ′ = s \ e ∪ ε(e). Unfortunately, this would require the
state s to be grounded. As described below it is also possible to compute the
resulting state in a lifted manner. Before, we introduce the concept of maximal
compound actions that encode the idea of maximally parallel actions in MRSs: A
multiset of action instances is called maximal compound action (short: compound
action) with respect to a lifted state if no further action instance can be added
to the set so that the compound action can still be applied in the lifted state.
Note that a compound action is applicable only if there is no entity referenced
in two action instances.

Given a state formula φ, we can compute the successor states as follows:
1. Compute the set of maximal compound actions C



2. For each c ∈ C : (a) Compute the resulting splits, and (b) Compute the
successor state sc ,

3. Merge the resulting successor states.
Predicting the successor states by a set of maximal compound actions might

result in a set of lifted states that can be merged or pruned to reduce the num-
ber of hypotheses. A simple form of merging is summing probabilities of equal
lifted states, as there might be multiple compound actions resulting in the same
lifted state. Furthermore, multiple similar states can be merged by combining
their entities so that the corresponding slot values are joined (exact or approx-
imate). However, in this paper, we only perform simple merging by summing
probabilities of equal lifted states.

3.4 Observation Model

In the previous section, we described state transitions based on actions. This
corresponds to the predict step in Bayesian Filtering. In this section, we describe
how the update step is realized in LiMa. This means, we want to manipulate the
belief state, by use of an observation.

An observation is simply a condition on a property value, similar to a pre-
condition of an action. The observation model OM takes a lifted belief state and
the current observation to calculate a list of new states with updated probabil-
ities for every lifted state of the belief state. I. e., the probabilities of the lifted
states were weighted according to the current observation. For this purpose, the
observation model splits each lifted state in the belief state on the observation
and keeps only those lifted states that are consistent with the observation. The
probabilities are then normalized to get a new valid belief state. Note that this
procedure can easily be used for uncertain observations.

Example 10 For s1 as in Example 5, let b1 be a belief state with b1(s1) = 1.
Observing o = [{Location 7→ sch ,Name 7→ sca}] with sch and sca as in Example 9,
we get OM (o, s1) = {1× s ′1} with

s ′1 = J 5〈Location: LHall ,Holds: LNil ,Name: LNames ′〉
1〈Location: LHall ,Holds: LNil ,Name: LNameA〉 K
{LHall 7→ δ(hall),LNil 7→ δ(nil),LNames ′ 7→ U(b, . . . , f),LNameA 7→ δ(a) }

After multiplying this with the probabilities in b1 and normalizing it (both trivial
in this example), we get b′

1 = {1× s ′1} as new belief state for observing o in b1.

3.5 Reasoning over Lifted States

The predict and update steps (described in Section 3.3 and Section 3.4) together
define a complete Bayesian Filtering cycle. As we aim at answering application
specific questions during the inference, we need to be able to reason about the
lifted belief state after every predict-update-cycle.



●

●

●

●
●
●

●
●●

●
●●

●

●

●

●
●

100

102

104

106

1 2 3 4 5 6

No. Agents

M
ax

. S
ta

te
s

●

●●●●●●●●

●
●●
●

●

●●

●

●
●●

●●●

●●

●

●●

●

●

●

10−2

100

102

104

1 2 3 4 5 6

No. Agents

T
im

e 
(s

)

Type Lifted Grounded

Fig. 1: Maximum number of (lifted) states during inference (left) and inference time
(right) for grounded inference and Lifted Inference with LiMa. For the grounded in-
ference, the scenarios with 5 and 6 agents could not be calculated due to the high
computational effort. Note the log scale on the y axis.

Example 11 Considering the lifted belief state in Example 6, the question we
want to answer is “Where is a?”. I. e. we want to calculate the distribution of
values of the Location slot for entities with the Name being a. For this purpose,
every lifted state in the lifted belief state needs to be evaluated against this
question. In our example, both lifted states s1 and s2 contain only entities with
slot Name mapping to the density U(a, . . . , f). I. e. agent a is involved in any of
those more general entities and thus the corresponding lifted states need to be
split to decide on the position of a:
s1) Splitting the entity in s1 on Name with value a results in a single lifted state

as the only possible Location for a is the hall. Thus, the probability of agent
a being at the hall in s1 is 1.0 resp. 0.75 (weighted by the probability of s1).

s2) There are 2 entities in s2 with Name mapping to a density that includes agent
a. A split on the name of agent a results in two possible lifted states: (a) a is
at the hall, or (b) a is at room A. Whereas the first lifted state represents 5
grounded states, the second represents only one. Thus, a is at the hall with
a probability of 5

6 and at roomA with a probability of 1
6 . These need to be

weighted by the probability of the lifted state s2.
Summing up the particular probability gives a probability that agent a is at the
hall of 0.95833 and that the agent is at room A of 0.04167. Note that this split is
for answering the application specific questions only. However, the un-split lifted
states will be used for the further inference.

4 Evaluation

In the following, our approach is compared with a conventional Bayesian Filter-
ing algorithm based on grounded states. As benchmark, we use the office dataset
[21] that is described as office scenario in Section 1. It includes 720 observation
sequences (120 for each number of agents between one and six) for which we
perform activity recognition using both approaches.



Here, we have been particularly interested in the number of states considered
during the inference task (i. e. the number of states in the belief state with non-
zero support) as a measure of performance, as all approaches become infeasible if
a very large number of hypotheses has to be considered. Furthermore, the relation
between lifted and grounded states demonstrates the level of abstraction. For this
office scenario, the number of agents is the factor determining the size of the state
space. Therefore, we calculated the maximal number of states (i. e. hypotheses)
maintained during Bayesian Filtering for each observation sequence. For LiMa,
we counted the lifted states, and for the grounded approach the number of
grounded states are considered. The results are shown in the left part of Figure 1.
Note the log scale on the y axis.

The maximum number of states visited during Bayesian Filtering grows ex-
ponentially for both inference algorithms. However, for LiMa, the number of
states is several orders of magnitude smaller than for the grounded state repre-
sentation. Thus, LiMa successfully exploits observation equivalence by reducing
the large number of grounded states to a much smaller number of lifted states. In
fact, for the grounded state representation, Bayesian Filtering has been infeasible
for problems with 5 or 6 agents due to the large number of states. Furthermore,
considering the overall time necessary for each inference task, LiMa also per-
forms several orders of magnitude faster than the grounded approach (see right
part of Figure 1).

5 Related Work

There are several other approaches that perform efficient probabilistic inference
or Bayesian Filtering on an abstract (e.g. logical) representation. A prominent
approach concerned with inference in relational graphical models is known as
Lifted Inference. The general idea is to exploit symmetries in the model, e.g. in
cases where many objects with similar properties and relationships are present.
We refer to [13, 15] for a more thorough overview. Opposed to LiMa, these
methods do not explicitly support sequential inference in dynamic domains, i.e.
Bayesian Filtering consisting of a predict-update cycle. The approach presented
in [1] efficiently evaluates multiple Lifted Inference queries on the same network,
but is not concerned with dynamic models, where random variables depends
on random variables from previous time slices. Lifted Inference algorithms for
dynamic models have also been devised [10], but this approach lacks an efficient
way to preserve the lifted representation over time. Furthermore, it performs
approximate inference, while LiMa is exact.

Ideas from Lifted Inference have also been used in the Relational Kalman
Filter [8, 7]. This approach is similar to LiMa in the sense that it performs lifted
Bayesian Filtering. That is, a compact representation of the belief state is main-
tained by grouping equivalent variables, and reasoning over them is performed
”in bulk“. However, the approach can only be used for gaussian linear models,
like the standard Kalman filter.



First-Order Markov Decision Processes (FOMDPs) [6, 20] employ first-order
logic to represent states of a Markov Decision Process. The task performed in
these formalisms is lifted planning, i.e. obtaining an abstract policy (that is
independent of specific domain objects), given a goal. The algorithmic ideas
used in this context decision-theoretic regression) are different from Bayesian
Filtering applied by LiMa. However, there is a certain relationship between Lifted
Inference and FOMDPs that has recently been discussed in [14].

6 Conclusion and Future Work

In this work, we presented a modeling formalism for abstract states that encodes
multiple grounded states in a Bayesian Filtering context. Our approach that we
call Lifted Marginal Filtering (LiMa) combines ideas of Computational State
Space Models (CSSMs) and Multiset Rewriting Systems (MRS) to overcome the
combinatorial explosion in grounded inference approaches. Our abstraction is
based on observation equivalence, i.e. we reason over groups of situations that
cannot be distinguished given the observations. Such groups (lifted states) are
represented as a multiset of structure descriptions (entities) along with a context
that describes the corresponding (possibly uncertain) values that can be inserted
into that structure in the form of density functions. The transition model of
LiMa is represented by precondition-effect actions similar to CSSMs that are
combined to compound actions representing a maximally parallel application of
such simple actions which is similar in MRS. We showed that applying actions
and observations may require splitting of lifted states as in Lifted Inference, and
derived a Bayesian Filtering algorithm that is capable of this representation and
computes prediction and update in the lifted domain. To answer application
specific questions, we demonstrated how to reason over lifted states. We expect
that in many scenarios, these answers can often be computed without completely
grounding and thus exploiting the lifted representation.

For an office scenario that suffers from a combinatorial explosion in the state
space size, we showed that the state space size as well as the inference time is
several orders of magnitude smaller than for the corresponding grounded infer-
ence.

Our approach can be extended in several ways. We will investigate the defi-
nition of a smoothing and MAP algorithm for the state representation. Further-
more, we plan to model time-dependency of state transitions, similar to Hidden
Semi-Markov Models. Approximation is another interesting aspect: In some do-
mains, identifying observations may lead to many splits, so that the algorithm
actually resorts to grounded inference. This problem has been addressed before
in Lifted Inference [24] by grouping states that are only approximately equal. In
our case, this corresponds to approximate merging, which we plan to investigate
in the future. A further aspect is to investigate which continuous densities can
be used in the context, i. e. for which densities appropriate splitting functions
can be defined that result in a compact representation of the split densities.



References

1. Ahmadi, B., Kersting, K., Sanner, S.: Multi-evidence lifted message passing, with
application to pagerank and the kalman filter. In: Proceedings-International Joint
Conference on Artificial Intelligence. p. 1152 (2011)

2. Baker, C.L., Saxe, R., Tenenbaum, J.B.: Action understanding as inverse planning.
Cognition 113(3), 329–349 (2009)

3. Barbuti, R., Levi, F., Milazzo, P., Scatena, G.: Maximally Parallel Probabilistic
Semantics for Multiset Rewriting. Fundamenta Informaticae 112(1), 1–17 (2011)

4. Berry, G., Boudol, G.: The chemical abstract machine. In: POPL. pp. 81–94. ACM,
San Francisco, USA (1990)

5. Bistarelli, S., Cervesato, I., Lenzini, G., Marangoni, R., Martinelli, F.: On repre-
senting biological systems through multiset rewriting. In: EUROCAST. pp. 415–
426. Springer, Las Palmas de Gran Canaria, Spain (2003)

6. Boutilier, C., Reiter, R., Price, B.: Symbolic dynamic programming for first-order
MDPs. In: Proceedings of the Seventeenth International Joint Conference on Ar-
tificial Intelligence. vol. 1, pp. 690–700 (2001)

7. Choi, J., Amir, E., Xu, T., Valocchi, A.J.: Learning Relational Kalman Filtering.
In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.
pp. 2539–2546 (2015)

8. Choi, J., Hill, D.J., Amir, E.: Lifted Inference for Relational Continuous Mod-
els. In: Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial
Intelligence. pp. 126–134. UAI’10, AUAI Press (2010)

9. Fox, V., Hightower, J., Liao, L., Schulz, D., Borriello, G.: Bayesian filtering for
location estimation. IEEE Pervasive Computing 2(3), 24–33 (Jul 2003)

10. Geier, T., Biundo, S.: Approximate online inference for dynamic markov logic net-
works. In: 23rd IEEE International Conference on Tools with Artificial Intelligence.
pp. 764–768. IEEE (2011)

11. Huang, J., Guestrin, C., Jiang, X., Guibas, L.: Exploiting Probabilistic Indepen-
dence for Permutations. In: AISTATS. pp. 248–255. Clearwater, USA (2009)

12. Kersting, K., Ahmadi, B., Natarajan, S.: Counting belief propagation. In: UAI.
pp. 277–284. Montreal, Canada (2009)

13. Kersting, K.: Lifted Probabilistic Inference. In: ECAI 2012 - 20th European Confer-
ence on Artificial Intelligence. Frontiers in Artificial Intelligence and Applications,
vol. 242. IOS Press (2012)

14. Khardon, R., Sanner, S.: Stochastic planning and lifted inference. arXiv preprint
arXiv:1701.01048 (2017)

15. Kimmig, A., Mihalkova, L., Getoor, L.: Lifted graphical models: a survey. Machine
Learning 99 (2015)

16. Kondor, R., Howard, A., Jebara, T.: Multi-object tracking with representations of
the symmetric group. In: AISTATS. vol. 2, pp. 211–218 (2007)

17. Krüger, F., Nyolt, M., Yordanova, K., Hein, A., Kirste, T.: Computational State
Space Models for Activity and Intention Recognition. A Feasibility Study. PLOS
ONE 9(11), e109381 (Nov 2014)

18. Poole, D.: First-order probabilistic inference. In: IJCAI. pp. 985–991 (2003)
19. Ramı́rez, M., Geffner, H.: Goal Recognition over POMDPs: Inferring the Intention

of a POMDP Agent. In: Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence. pp. 2009–2014 (Jul 2011)

20. Sanner, S., Boutilier, C.: Practical solution techniques for first-order MDPs. Arti-
ficial Intelligence 173, 748–788 (2009)



21. Schröder, M., Lüdtke, S., Bader, S., Krüger, F., Kirste, T.: An of-
fice scenario dataset for benchmarking observation-equivalent entities (2016),
http://dx.doi.org/10.18453/rosdok id00000138

22. Schröder, M., Lüdtke, S., Bader, S., Krüger, F., Kirste, T.: Abstracting from
Observation-equivalent Entities in Human Behavior Modeling. In: AAAI Work-
shop: Plan, Activity, and Intent Recognition (Feb 2017)

23. Van Den Broeck, G., Taghipour, N., Meert, W., Davis, J., De Raedt, L.: Lifted
probabilistic inference by first-order knowledge compilation. In: IJCAI. pp. 2178–
2185 (2011)

24. Venugopal, D., Gogate, V.: Evidence-based clustering for scalable inference in
markov logic. In: Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases. pp. 258–273. Springer (2014)

25. Wilson, D.H., Atkeson, C.: Simultaneous Tracking and Activity Recognition
(STAR) Using Many Anonymous, Binary Sensors. In: Pervasive, pp. 62–79.
Springer (2005), http://dx.doi.org/10.1007/11428572 5


