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ABSTRACT
Tracking multiple targets with anonymous sensors (e.g. pres-
ence sensors) leads to a combinatorial explosion in the num-
ber of possible siuations (hypotheses) that need to be tracked,
due to the uncertainty of the association of identities to ob-
served tracks. We propose a novel Bayesian filtering algo-
rithm that can solve this problem by employing a compact
state representation. A single lifted state represents a uni-
form distribution over all possible identity-track associations.
The state representation and dynamics is based on Multiset
Rewriting Systems and Lifted Probabilistic Inference. We
show that Bayesian filtering using this representation is pos-
sible without resorting to ground states. This is demonstrated
for a person tracking scenario in an office environment where
up to seven persons are observed with presence sensors. Our
approach naturally allows to simultaneously track persons
and estimate their total number. The number of hypotheses
is several orders of magnitude smaller than using a ground
state representation.
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INTRODUCTION
Tracking persons in indoor environments is necessary for ap-
plications such as providing assistance or disaster manage-
ment. Bayesian filtering algorithms typically used for track-
ing suffer from the state space explosion problem: If the sen-
sor measurements do not provide any information of the iden-
tity of the agent that produced the measurement, filtering al-
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Figure 1. Floor plan of the office environment. Red dots denote PIR
sensors in the corridor, blue dots denote PIR sensors in the other rooms.
Adopted from [8].

gorithms have to keep track of all possible assignments of
sensor measurements to agent identities [4]. In this work, we
present a solution to this problem, based on a lifted filtering
algorithm. The algorithm represents all possible permutations
of agents and tracks as a single, parametric state.

The scenario we are considering is an office environment that
is equipped with passive infrared (PIR) presence sensors (cf.
Figure 1). Several persons move independently in this envi-
ronment. The sensors do not supply any information about
the identities of an observed person, and do not allow any
conclusions about the number of persons in the sensing area.
Due to these sensors, we cannot distinguish the following
states (cf. Figure 2, left):

• Alice is at room A, and Bob is at room B
• Bob is at room A, and Alice is at room B

We call an explicit representation of a state that is possi-
ble at a specific point in time hypothesis1. In general, for
n observed persons, there are n! associations of identities to
observations. This combinatorial explosion makes conven-
tional Bayesian filtering, where each of the associations is
represented by a separate hypothesis, infeasible. The specific
tracking scenario considered here has already been investi-
gated by Krüger et al. Their algorithm needs to represent each
idendity-observation association explicitly, and thus suffers
from the combinatorial explosion2 [8, 9].
1For example, each particle of a particle filter is a hypothesis.
2Although they avoid the combinatorial explosion in some cases by
distinghishing between the different agents based on prior knowl-
edge about the agents’ goals.



Figure 2. General idea of our algorithm. Instead of representing the
identity permutations explicitly as multiple hypotheses (left), we repre-
sent them parametrically as a single hypothesis (right). The circle in
the lifted state represents a uniform distribution of permutations of the
names.

We propose to solve this problem by using a hypothesis rep-
resentation that abstracts from the identities, i.e. a single hy-
pothesis represents all possible permutations of tracks and
identities. Multiple hypotheses thus are only neccessary to
represent uncertainty about the number of persons per room.
States are modelled as multisets of entities (key-value maps),
where the values are pointers to distribution representations
(in this case, a uniform distribution of identity-track associ-
ations). The general concept is depicted in Figure 2. The
dynamics of the system is described by precondition-effect
actions. Thus, the algorithm can be understood as a Bayesian
filtering algorithm for a Multiset Rewriting System [1] with
structured entities. Note that the algorithm still maintains the
identity information and does not discard them completely.
Therefore, as opposed to other approaches that abstract from
the identities (e.g. [3]), the algorithm is also able to process
identifying observations (e.g. a certain room can only be en-
tered with an ID card). We show how the tracking problem
can be solved efficiently with this algorithm. We also inves-
tigate the effect of different sensor placements (see Figure 1)
on the tracking accuracy. Furthermore, we show that using
this algorithm, we can also directly estimate the number of
persons that are present in the environment (e.g. for disaster
management applications).

METHODS
In this section, we give a brief introduction into Bayesian fil-
tering, the basic concept that the Lifted Marginal Filter is built
on. Afterwards, we describe the state representation and fil-
tering algorithm of the Lifted Marginal Filter.

Bayesian Filtering
The goal of Bayesian filtering is to estimate the (hidden) state
sequence x1:t , based on a sequence of noisy observations y1:t .
That is, we want to estimate the distribution p(x1:t |y1:t), called
belief state. This estimation can be peformed recursively, by
decomposing it into a predict

p(x1:t+1|y1:t) = p(x1:t |y1:t)p(xt+1|xt) (1)

and an update step

p(x1:t+1|y1:t+1) =
p(yt+1|xt+1)p(x1:t+1|y1:t)

p(yt+1|y1:t)
(2)

We call p(xt+1|xt) transition model, and p(yt+1|xt+1) obser-
vation model. Common approaches to perform this recursive
estimation are Hidden Markov Models (where states are dis-
crete and the transition model is a matrix of transition prob-
abilities), and Particle Filters, that represents the belief state
by samples.

These methods represent the belief state explicitly, by enu-
merating all hypotheses and their probability. Thus, they suf-
fer from the combinatorial explosion occuring in tracking sce-
narios with uncertainty about the agent-observation associa-
tion.

Lifted Marginal Filtering
In the following, we will briefly describe the Lifted Marginal
Filtering state representation and filtering algorithm. Due to
lack of space, we omit the formal details here. Instead, we
give an intuition on the lifted state representation, how it is
used to compactly represent a belief state and how Bayesian
filtering can be performed with this representation.

State Representation
The general idea of Lifted Marginal Filtering is to maintain a
compact belief state representation, i.e. each lifted state rep-
resents a set of ground states. More concretely, a lifted state
is represented by a multiset of structured entities. Entities are
property-value maps. Thus, a concrete assignment of values
to all properties corresponds to a ground state. For example,
the multiset

~1〈Name: Alice,Location: L1〉,1〈Name: Bob,Location: L2〉�
represents the ground state with two entities: Alice is at loca-
tion L1 and Bob is at Location L2.

The lifting is performed by using distributions to represent
slot values. The distribution used in this scenario is the urn
without replacement, denoted by U (·), which represents a
uniform distribution over permutations3. Thus, a first ap-
proach for modelling a lifted state for the above scenario
might look like this:

~1〈Name: U (Alice, Bob),Location: L1〉,
1〈Name: U (Alice, Bob),Location: L2〉�

represents four ground states: “Alice is at L1 and L2”, “Alice
is at L1 and Bob is at L2”, “Bob is at L1 and L2”, and “Bob is
at L1 and Alice is at L2”. Note that a lifted state can represent
infinitely many ground states when we use continous distri-
butions. By using such a representation, we assume that the
distribution of slot values is independent of other slot values
of this entity. The concept we use here is related to the Rao-
Blackwellized Particle Filter [2]: By representing some state
variables parameterically, we need fewer explicit samples to
represent the whole belief state.
3Other distributions that are straightforward to handle are gaussian
distributions, and urns with replacement. Using these distributions
allows to perform lifting in other scenarios.



In the example from the beginning (cf. Figure 2), we actu-
ally want to represent only the two states “Alice is at L1 and
Bob is at L2”, and “Bob is at L1 and Alice is at L2”4. This
is achieved by storing the distribution representation outside
of the multiset. Instead of writing the distribution represen-
tation directly into the slot values, we use pointers that point
to a density representation that is stored outside the multiset
state. We call the structure where the density representations
are stored context. This way, multiple slots can draw values
from the same distribution. This gives us the possibility to
represent slot values of multiple entities, that depend on each
other. For our example, this allows us to model the constraint
that each entity has a unique name. The example finally looks
like this5:

~1〈Name: N,Location: L1〉,1〈Name: N,Location: L2〉�
{N 7→U (Alice, Bob)}

Using this representation, we separate the structure of entities
from the distribution of possible values. This way, we can
group multiple entities that have the same structure, but can
have distinct slot values in each ground state. For example,
the state

~3〈Name: N,Location: L1〉,1〈Name: N,Location: L2〉�
{N 7→U (A, B, C, D)} (3)

represents all states where three entities are at L1 and one
entity is at L2, but their identities are arbitrary permutations.

The belief state (a distribution over ground states) can be
represented by a distribution over lifted states, because each
lifted state itself represents a distribution over ground states.
This means the belief state can be represented very com-
pactly, compared to an explicit representation of ground
states.

State Dynamics
By representing the belief state as a distribution over lifted
states, the question is whether we can define a Bayesian fil-
tering algorithm for this representation. It is crucial for the
efficiency of our approach that the filtering algorithm can op-
erate on the lifted state representation (grounding all states
would result in the combinatorical explosion that we are try-
ing to avoid with our approach). We can indeed define such
an algorithm. We will describe the predict and update steps
of the algorihm in the following.

The transition model is defined by precondition-effect ac-
tions. A precondition can be understood as a condition on
an entity, e.g. the presence of a certain slot, or a specific slot
value. The effects can manipulate the state arbitrarily: Cre-
ate and remove entities, manipulate slots, and manipulate the
context. There are cases where the preconditions are inde-
terminate with respect to an entity, because a slot value of an
entity is not grounded, but a distribution that can either satisfy
or not satisfy the precondition, depending on the value that is
4The other two states “Alice is at L1 and L2” and “Bob is at L1 and
L2” are impossible, because a person can only be at one location at
a time.
5N is the density label that points to the distribution representation
U (Alice,Bob) stored in the context.

drawn from the distribution. In this case, we perform an op-
eration called splitting. That is, we split the lifted state in two
lifted states, one where the precondition is satisfied, and one
where it is not satisfied. This requires manipulating the cor-
responding distribution representations. Whether this opera-
tion is possible depends on the concrete distribution, but for
the distribution used here (urns without replacements), this is
rather straightforward. For example, splitting the state from
Equation 3 on the precondition ”Name=A & Location=L2“6

results in two states. The state where the precondition is sat-
isfied:

~3〈Name: N,Location: L1〉,1〈Name: N′,Location: L2〉�
{N 7→U (B, C, D),N′ 7→ δ (A)7 }

and the state where the precondition is not satisfied:

~1〈Name: N′,Location: L1〉,2〈Name: N,Location: L1〉,
1〈Name: N,Location: L2〉�
{N 7→U (B, C, D),N′ 7→ δ (A)}

Note that the first state has a probability of 1/4 and the second
state has a probability of 3/4 because the probability of per-
son A being at location L2 is 1/4, because this is exactly the
situation described by the state in Equation 3 (due to the uni-
form distribution of the urn). Thus, we can decide on the ap-
plicability of an action in a state, without completely ground-
ing the state. The transition model is obtained by comput-
ing maximally parallel compound actions (MPCAs), similar
to the Multiset Rewriting System described by Barbuti et al.
[1]. That is, entities that satisfy a precondition are bound to
this action, and cannot be used to satisfy the preconditions
of another action. A MPCA is a set of actions such that no
further action is applicable. Note that there can be multiple
MPCAs. The probability of each MPCA (i.e. each state tran-
sition) is based on the weights of the (atomic) actions and the
number of ways the entities can be bound to the preconditions
of the MPCAs (i.e. the multiplicity of this MPCA). Finally,
performing the predict step means applying all possible MP-
CAs to each state. The posterior probability of each state
is the product of the prior and the probability of the MPCA.
Afterwards, we merge equal states by summing up their prob-
ability, similar to the marginal filter [10].

The update step can be any function that manipulates a state
distribution. In our case, we discard all states that are not
compatible with the observations: That is, all states where at
least one entity is at a room where no entity was observed,
are discarded. The distribution of the remaining lifted states
is normalized afterwards.

EXPERIMENTAL EVALUATION
The overall goal of the experiments was to demonstrate the
capabilities of Lifted Marginal Filtering in the specific sce-
nario. More specifically, we will anwer two questions: (1)

6We do not attempt to introduce a formal syntax for preconditions
here. The precondition ”Name=A & Location=L2“ should be read
as: ”Requires an entity that has a slot Name with value A and slot
Location with value L2“.
7δ (·) denotes the Kronecker delta.
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Figure 3. Mean number of hypotheses stored explicitly during filtering
for different number of people. Filtering the ground state representation
has been infeasible for six and seven agents.

Can the algorithm reduce the number of hypotheses neces-
sary for Bayesian filtering in this scenario, and (2) can the
algorithm solve the simultaneous tracking and counting prob-
lem.

Empirical Data
We will evaluate our algorithm with an office scenario dataset
[6]. The scenario consists of persons that move around an of-
fice. The task is to track the persons, i.e. estimate the position
of each person over time. The floor plan is depicted in Figure
1. Experiments with one to seven people that move around
these rooms have been executed. For each number of per-
sons, five iterations have been executed, resulting in 35 iter-
ations. The data has been manually annotated in one-second
time steps.

Based on these annotations, we simulated observation data of
presence sensors that only recognize if a person was present
or not, but not which person or the number of persons that
are present. Apart from this uncertainty, this simulated data
is always correct, i.e. if a person was in a room at a specific
time step, this is always correctly recognized by the simulated
sensors.

Model
We model this scenario in our approach as follows. Each state
contains one entity for each person. Each entity has a location
and a name slot. The location is represented explicitly, and
the name is represented by an urn without replacement.

The initial location distribution has been estimated empiri-
cally based on the recorded data. Depending on the per-
formed experiment (see below), the initial belief state assigns
a non-zero probability only to the correct number of agents,
or it is a distribution over the number of agents8.

The transition model is described by two types of actions,
move( f rom, to) and stay. The probability of each action has
8We use Jeffreys’ prior for scale parameters [5], which is p(n) ∝

1/n.

been estimated empirically from the recorded data. Due to
the transition semantics of our approach (transitions are max-
imally parallel compound actions), all agents must perform a
move or a stay action simultaneously. For example, for two
agents that are both at the same room, and an environment
consisting of two rooms, there are 3 possible MPCAs: both
stay, both move, and one of them moves. Note that we do
not have to distinguish which of the agents moved, due to the
parametric description of the agents’ names.

Experimental Design
Here, we describe the experiments we performed in order to
analyze the capabilities of the filtering algorithm. To compare
results, we use the root mean squared error (RMSE).

RMSE =

√√√√√ T
∑

t=1

|Locations|
∑

l=1
(truthl,t − estimatel,t)2

T ∗ |Locations|
(4)

truthl,t and estimatel,t denote the true and estimated number
of persons at room l at time step t. That is, we only compare if
the correct number of persons have been estimated, but we do
not consider the persons’ identities (because the observations
do provide any information about the identities).

The following research questions have been adressed:

Q1 Which effect has the lifted state representation on the
number of hypotheses stored explicitly, compared to a
ground state representation?

Q2 What effects do the sensor placement and prior knowl-
edge of the number of persons have on the error in the es-
timated number of persons per room?

The rationale behind Q2 is as follows: In a real-world scenar-
ios, presence sensors might only be installed in some rooms
due to cost and privacy issues. We therefore investigate the
performance of our approach with different sensor place-
ments. Furthermore, the number of persons might not be
known a priori, e.g. because persons might enter and leave
the observed area.

For answering Q1, we assessed the filtering algorithm for
each of the 35 data sets using a lifted as well as the ground
state representation, and compared the mean number of hy-
potheses for a fixed number of persons. For this experiment,
the true number of persons is known a priori, and only the
hallway sensors are used (as these factors are not relevant for
assessing Q1).

To answer Q2, we varied the prior knowledge about the num-
ber of persons, and the used sensor data. Two types of sensor
placement have been evaluated: (1) PIR sensor only in the
corridor (red dots in Figure 1), (2) PIR sensors in all rooms
(blue and red dots in Figure 1). Three levels of prior knowl-
edge about the number of agents have been evaluated: (1)
number of agents known a priori, (2) number of agents known
up to ±1 of the true number, (3) number of agents unknown,
i.e. one to seven agents possible. These six parameter combi-
nations have been assessed on all 35 data sets. We evaluated
the RMSE (cf. Equation 4), and the error in the estimated
number of persons.



RESULTS
Figure 3 shows the number of hypotheses of the Lifted
Marginal Filter and a conventional Bayesian filter with
ground state representation. Both approaches need an expo-
nential number of states to represent the belief state. This is
due to the exponential number of possible multiplicities of
persons per room, i.e. both approaches need to represent the
situations: “two agents are at location A, one agent is at lo-
cation B”, and “one agent is at location A, two agents are at
location A” explicitly. However, the belief state representa-
tion is several orders of magnitude smaller when the lifted
state representation is used, as all identity permutations are
represented by a single lifted state. The effect gets more pro-
nounced for data sets with a larger number of agents. For 2 (3,
4, 5) agents, the grounded representation needs 1.8 (4.8, 14.4,
53.3) times the number of hypotheses than the lifted represen-
tation. The reason for this behaviour is the factorial blowup
the ground belief state representation experiences due to the
factorial number of identity-entity associations. This result
shows that Lifted Marginal Filtering can indeed maintain a
compact belief state representation in this scenario, compared
to an algorithm that employs a ground hypotheses representa-
tion (Q1). Furthermore, the advantage of the lifted represen-
tation gets even more pronounced for larger scenarios.

For answering Q2, we calculated the RMSE (cf. Equation 4)
for each sensor configuration, and each prior knowledge level
about the number of agents. The results are shown in Figure
5. An interesting observation is the fact that the sensor con-
figuration has the largest effect on the RMSE. Observing all
rooms (instead of just the corridor) naturally leads to a lower
RMSE, because more information on room occupation are
available. However, even when only the corridor is observed,
we still achieve an RMSE of < 0.5. The second interesting
fact is that prior knowledge about the number of agents does
not increase the accuracy substantially. Thus, person tracking
in this scenario is possible even without knowing the number
of persons in advance.

Figure 4 shows the absolute error in the estimated total num-
ber of persons. In the left plot, only the corridor has been
observed, and in the right plot, all rooms have been observed.
In all cases, the estimate becomes more accurate over time.
This is due to the fact that over time, sensor observations oc-
cur that can only be explained by a specific number of per-
sons. These observations rule out hypotheses with the wrong
number of agents. When all rooms are observed, the error
always becomes zero after some time, i.e. only hypotheses
with the correct number of agents are present. Thus, the eval-
uation shows that simultaneously tracking persons and esti-
mating their number using Lifted Marginal Filtering is indeed
possible for this scenario.

RELATED WORK
Multiple object tracking with anonymous sensor is a well-
known problem in the literature [11, 3]. They either represent
all possible data associations explicitly and thus suffer from
the combinatorial explosion [11], or they discard the identity
information completely [3].

Huang et al. [4] employ propose to represent a distribution
over permutations (each permutation represents a data asso-
ciation) by its first few fourier coefficients. This way, they
can compactly represent an exponential number of hypothe-
ses. Our work is different in two aspects. Their representa-
tion is only compact because higher-order fourier coefficients
are discarded, i.e. by approximation. We propose an exact
algorithm. Furthermore, their algorithm is only concerned
with the combinatorial explosion resulting from permutation
effects. While we use our algorithm only for permutations
here, it can in principle handle other forms of symmetries,
depending on the distributions that are maintained in the con-
text.

The state representation and dynamics of Lifted Marginal Fil-
tering is similar to the maximally parallel semantics for Mul-
tiset Rewriting Systems proposed by Barbuti et al. [1]. How-
ever, their system does not allow structured entities, and they
do not devise a filtering algorithm.

Another concept that is related to our algorithm is Lifted
Probabilistic Inference [7]. These approaches are concerned
with symmetries in graphical models. They aim at exploiting
these symmetries by grouping similar random variables, and
performing inference over these groups (just as our algorithm
groups similar states). However, they do not explicitly sup-
port sequential inference in dynamic domains, i.e. Bayesian
filtering consisting of a predict-update cycle.

CONCLUSION
We introduced the problem of tracking and counting multiple
persons based on anonymous sensors in partially observed en-
vironments. We showed that the combinatorial explosion in
the number of hypotheses that is inherent to this problem can
be handled by a novel filtering algorithm that compactly rep-
resents sets of hypotheses. Using this algorithm, the belief
state can be represented more compactly, enabling more effi-
cient filtering. Furthermore, we showed that estimating num-
ber of agents can directly be integrated into the filtering algo-
rithm, without additional effort. Situations with up to 7 agents
could be handled exactly by our algorithm. Thus, for typi-
cal households we are able to give a good estimation about
the number and position of persons, based solely on presence
sensors. Although not explicitly covered here, the algorithm
is a very general solution to the problem. For example, it is
straightforward to process identifying observations (via split-
ting operations), which is not possible with representations
that do not model the identity information at all.

To employ the algorithm to larger problem domains, approxi-
mation methods have to be investigated. A simple form of ap-
proximation is pruning, i.e. discarding unlikely hypotheses.
Another aspect that has not been investigated here is merging,
the opposite operation to splitting. Merging multiple states
results in a single lifted state that represents them. Merging
can be performed exactly or approximately (by assuming in-
dependence between slot values that is not supported by the
actual ground states). Investigating the effect of these meth-
ods regarding accuracy and belief state size is a topic for fu-
ture research. Another interesting aspect is to also represent
the entitiy multiplicities in a parametric way, such that the two
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states “two agents at location A, one agent at B” and “one
agent at A, two agents at B” can be represented by a single
parametric state. This would result in a belief state that grows
only polynomially with the number of agents.
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