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Abstract

We present a model for exact recursive Bayesian
filtering based on lifted multiset states. Combining
multisets with lifting makes it possible to simul-
taneously exploit multiple strategies for reducing
inference complexity when compared to list-based
grounded state representations. The core idea is to
borrow the concept of Maximally Parallel Multi-
set Rewriting Systems and to enhance it by con-
cepts from Rao-Blackwellization and Lifted Infer-
ence, giving a representation of state distributions
that enables efficient inference. In worlds where
the random variables that define the system state are
exchangeable – where the identity of entities does
not matter – it automatically uses a representation
that abstracts from ordering (achieving an exponen-
tial reduction in complexity) – and it automatically
adapts when observations or system dynamics de-
stroy exchangeability by breaking symmetry.

1 Introduction
Modeling dynamical systems is fundamental for the under-
standing of complex phenomena in a variety of AI tasks. Mul-
tiset Rewriting Systems (MRSs) provide a convenient mech-
anism to represent dynamic systems that consist of multi-
ple interacting entities which can be grouped into “species”.
MRSs can be used to model biochemical reactions [Bar-
buti et al., 2011], population dynamics in ecological stud-
ies [Pescini et al., 2006], network protocols [Cervesato et al.,
1999], etc. Or consider human activity recognition (HAR)
[Bulling et al., 2014], the target of our present paper, and
assume that we are interested in reconstructing structured ac-
tivities of one or more human protagonists (pursuing every-
day activities) from noisy or ambiguous sensor data. Here,
multisets naturally arise when we want to represent states
that encompass multiple persons, or multiple objects that are
handled by persons, which can not be discriminated by ob-
servations. In HAR, one established method for deriving
state distributions from sequences of observations is recur-
sive Bayesian state estimation (RBSE), for instance based on
various kinds of enhanced hidden Markov models [Bui et al.,
2002; Liao et al., 2007] or particle filtering [Fox et al., 2003;

Krüger et al., 2014]. RBSE iteratively computes the poste-
rior p(St | y1:t) for time t from the previous posterior p(St−1 |
y1:t−1) at time t − 1 and an observation yt.

In application domains such as chemistry, cell biology
or ecology, MRSs are typically used for simulation studies.
However, MRSs should in principle also allow the online in-
tegration of sensor data as required by HAR and as provided
by recursive Bayesian state estimation. However, when we
try to apply established methods to systems whose dynamics
is represented by MRSs, we find that they cannot efficiently
represent the exact posterior, in terms of the amount of stor-
age required.

In this paper, we present a novel algorithm for exact RBSE
for systems whose state space and dynamics can be repre-
sented by MRSs, which we call Lifted Marginal Filtering
(LiMa). The central technical idea of LiMa is to introduce
a suitable factorized representation of distributions over mul-
tisets which allows to represent some factors in a parametric
way rather than by samples or by complete enumeration, sim-
ilar to Rao-Blackwellization as used in particle filters [Doucet
et al., 2000]. Interestingly, the prediction and update steps of
RBSE can be performed directly on the factorized represen-
tation, without resorting to the original, much larger distri-
bution, by exploiting exchangeability [Niepert and Van den
Broeck, 2014]. In certain cases (computing applicable ac-
tions, and when conditioning on identifying observations), the
representation of the factorized distribution needs to be ma-
nipulated by splitting operations, similar to splitting used in
exact lifted inference algorithms [Poole, 2003].

Depending on the underlying model, this approach reduces
the number of explicitly represented states st by orders of
magnitude in comparison to an approach using samples or
enumeration of the st. This is possible because LiMa com-
bines two effects: The multiset state representation, which
allows to exploit exchangeability (Lifted Inference), and the
factorization of the multiset state distribution, which allows
manipulating the state distribution on a parametric level (Rao-
Blackwellization). To the best of our knowledge, this is the
first attempt to provide RBSE for systems with MRS dynam-
ics and the first attempt that allows to perform prediction and
update directly (at least partially) on the factorized represen-
tation.

The paper is organized as follows: We continue by
briefly introducing Probabilistic Maximally Parallel Multiset



Rewriting Systems (PMPMRS) in Section 2. The factoriza-
tion of distributions over multisets is introduced in Section 3.
In Section 4, we show how RBSE can be performed on the
factorized representation, without needing to enumerate the
original states. Our approach is demonstrated on two multi-
agent activity recognition tasks in Section 5.

2 Background
In the following, we briefly introduce some background on
multiset rewriting systems (MRSs).
Multisets: Let E be a set of species. A multiset (over E)
is a map s : E → N from species to multiplicities (natural
numbers). Let s, s′ be two multisets, let multiset union s ]
s′, multiset difference s∪- s′ and multiset subset relation s v
s′ be defined the obvious way. For species s1, . . . , sk ∈ E
and multiplicities n1, . . . , nk ∈ N where ni > 0 we write
J n1e1, . . . , nkek K to denote a multiset, where the multiplicity
of ei is ni and the multiplicities of all species not listed is 0.
Actions: For now, it is sufficient to consider a rewriting rule
as a pair of multisets (p, e), where p are the prerequisites and
e is the add list. The action (also known as rewriting rule)
(p, e) is applicable to a multiset m if p v m. The result of
applying (p, e) to m is the multiset (m∪- p) ] e.
Compound Actions: In scenarios where multiple entities
(inter-)act simultaneously, multiple actions may take place
between consecutive time steps. This intuition is captured
by compound actions, that describe the transition semantics
of maximally parallel multiset rewriting systems (MPMRSs)
[Barbuti et al., 2011]: Each individual takes part in an action
if possible, and all actions are performed in parallel. Specif-
ically, a compound action is a multiset of actions. The com-
pound action c is applicable in a state s if all prequisites are
present in s, i.e.](pi,ei)∈c pi v s. The compound action c
is maximal if no action a can be added such that c ] J 1a K is
still applicable. The result s′ of applying a compound action
c to a state s is the union of the effects of the individual ac-
tions: all prerequisites are removed from s, and all add lists
are inserted, i.e., s′ = (s∪- p′) ] e′ with p′ = ](pi,ei)∈c pi

and e′ =](pi,ei)∈c ei.

Sampling: Probabilistic MRSs assign a weight to each ac-
tion. Given a state s, these weights, and the number of pos-
sibilities the compound actions can be instantiated, define a
distribution of compound actions p(C | S). More details are
provided in [Barbuti et al., 2011]. Using this distribution, it
is easy to draw sample trajectories: Given a state s, we calcu-
late all applicable compound actions and their probabilities,
sample a single compound action from p(C |S=s), and apply
it to s. This process is iterated for the resulting state s′.

3 Factorizing Distributions over Multisets of
Structured Entities

In this and the following section, we present the main tech-
nical contribution: The factorization of distributions of mul-
tisets over structured entities, and a probabilistic maximally
parallel MRS (PMPMRS) that operates directly on this fac-
torized, parametric representation.

3.1 Problem Statement
We start by outlining the problem that makes the factorized
representation necessary. For RBSE, we are not interested
in sampling trajectories of states (as outline above), but in
maintaining a distribution of multiset states.

The question is how to efficiently represent such a distri-
bution p(S=s). If the set of species E is small and finite, the
number of multisets over E with nonzero support will typ-
ically also be small. Therefore, we can simply maintain a
set of tuples (si, pi) that represent a categorical distribution.
However, if E is large or even continuous and thus also the
number of multisets over E , storing the resulting large or in-
finite number of tuples (si, pi) becomes infeasible.

The conventional solution for distributions over metrical
random variables is to use parametric distributions that can
be represented and manipulated efficiently on the syntacti-
cal level, i.e. by storing and manipulating just the parame-
ters of the distribution. For example, a Kalman filter uses
p(S) ∝ N (µ, σ2) to represent a distribution over continuous
states by storing and manipulating µ and σ2. Unfortunately,
multisets do not necessarily possess a metrical structure that
allows to use parametric distributions. In our approach, we
decompose the multisets into a metrical part that allows for
parametric distributions, and a remaining, discrete part that
that can be represented by a categorical distribution with
small (or at least finite) support. We achieve this by introduc-
ing structured entities that allow for such a decomposition.

3.2 Structured Species
An entity (a species with internal structure) is a map of prop-
erty names K to values V , i.e. a partial function E = K 7→ V .
This is a necessity for the scenarios we are considering,
as they contain entities with multiple, possibly continuous,
properties. For example, an entity might have a continuous
location, e.g. a real number. Using flat (unstructured) species,
this would require to introduce an infinite number of possible
species, and potentially also to an infinite number of actions
(as each action prerequisite must be a specific species). Using
structured entities, the action prerequisites can be expressed
more succinctly as constraints on the entities’ properties, as
described below. Another reason for using structured entities
is that they allow for factorizing the distributions of multisets.

A multiset over entities E is a state of our MRS. Specifi-
caly, we call a multiset s ∈ S a ground state. For example,
the following state describes a situation in a person tracking
scenario where two entities, named Alice and Bob, are at the
continuous locations 1.3 and 2.11:

J 1〈N: Alice,L: 1.3〉, 1〈N: Bob,L: 2.1〉 K (1)

3.3 Factorising Multiset Distributions
Suppose we can decompose the state s into two parts t and v,
such that there is a bijection from s to tuples (t, v). Then, a
state distribution can be factorized as

p(S) = p(T,V) = p(T) p(V |T). (2)

1For simplicity, the location is a continuous univariate number;
in realistic scenarios we might e.g. use 2D locations.



This idea is independent of multisets and is called Rao-
Blackwellization [Doucet et al., 2000]. The question is how
to decompose multiset states efficiently, such that the decom-
position leads to a more efficient representation of the distri-
bution: The factor p(V | T) is handled parametrically, while
p(T) has a smaller support than p(S).
Decomposition: The structured species described in Sec-
tion 3.2 allow for such a decomposition: We separate the
structure of the multiset (how many entities are there, and
what are their properties) from the values of the properties.
More formally, the decomposition is performed as follows: A
structure t ∈ T (a multiset over Eτ ) is a multiset of entities
where the property values are variables, instead of specific
values (called entity structures Eτ ). The values v ∈ W are
a list of specific values (of the properties). For example, the
state from Equation 1 is decomposed into:

t =J 1〈N: n1,L: l1〉, 1〈N: n2,L: l2〉 K
v =(Alice, 1.3,Bob, 2.1)

(3)

Given t and v, the state s can be constructed by assuming a
canonical order of entities in t (e.g. the lexicographic order)
and by replacing each variable by the corresponding value
in v (i.e the i-th variable is replaced by the i-th value). This
describes a bijection between (t, v) and s, which allows us to
represent p(s) in a factorized way, according to Equation 2.
Distributions of structure and values: Performing RBSE
inference requires that the distributions p(T) and p(V | T)
can be represented finitely. For p(T), this is straightforward:
Given that p(S) is a categorical distribution with finite sup-
port, we can also represent p(T) as a finite categorical distri-
bution, simply because multiple elements of S are mapped to
a single element of T .

We assume that p(V | T) is a product of m parametric dis-
tributions with parameters θ such that p(V | T) = Πi pi(Vi |
T, θi). Every pi describes the distribution of one or multiple
properties and can be represented by the parameters θi, and
an indicator signifying which parametric form the distribution
has. We call ρ(pi) ∈ R the representation of pi, and R the
representation space. For example, U(A,B) represents an urn
without replacement, containing the elements A and B. How
to represent the complete value distribution, i.e. ρ(p(V | T)),
will be discussed next.
Property-Distribution Association: The remaining ques-
tion is how to associate property values in t with the ran-
dom variables in p(V | T=t). At first, this may seem obvi-
ous: We order the entities in t, and associate the i-th property
with random variable vi, as suggested by Equation 3. How-
ever, this is not sufficient in many cases, as there might be
non-local dependencies of multiple values: For example, in
Equation 3, the distributions of the names of both entities are
not independent, assuming that all names are unique. Thus,
we must make sure that exactly the name properties are dis-
tributed according to a joint distribution (e.g. an urn without
replacement). To succinctly represent which property values
are associated with which distributions, we propose a label-
ing mechanism that provides this association. We introduce
this mechanism by describing Eτ and the representation of the
value distribution, ρ(p(V |T)) in more detail.

An entity structure is a map from property names K to la-
bels D, i.e. Eτ = K 7→ D. The distribution p(V | T) is rep-
resented as a map of labels D to distribution representations
R. Note that these labels are essentially pointers. We call the
representation of p(V |T) the context ct = ρ(p(V |T)) of t.

This mechanism allows us to easily represent correlations
of properties, even when the properties belong to different
entities, without the need to define an order of the entities in
t. This is illustrated in the following example.
Example: Suppose we know that two persons are present in a
situation, and we have normally distributed location estimates
for both persons (e.g. based on a measurement), but we do not
know which specific person corresponds to which location
estimate. This situation can be described by the following
factorized state representation, i.e. the pair of structure t and
context ct:

t = J 1〈N: N,L: L1〉, 1〈N: N,L: L2〉 K
ct = 〈N : U(A,B),L1 : N (1.3, 2.0),L2 : N (2.1, 1.0)〉 (4)

Note how in the example, we see how the same distribution
N can be referenced multiple times in t, which means that the
corresponding properties are distributed according to a joint
distribution. On the other hand, properties that reference dif-
ferent distributions are independent. In the example, the name
of an entity is independent of the entity’s location.
Exchangeability: Using the labeling mechanism, we do not
rely on an order of entities, i.e. the order of the entities in t
is arbitrary. Therefore, we require all joint distributions in
the context to be exchangeable, i.e. p(x1, x2) = p(x2, x1).
From the view of Lifted Inference, the context thus repre-
sents an exchangeable decomposition [Niepert and Van den
Broeck, 2014] of the value distribution. This property is the
reason that allows efficient filtering, as will be explained in
Section 4.
Lifted State: Using our techniques, we can represent the cat-
egorical distribution p(S) = p(T,V) by: (i) A categorical
distribution of structures p(T) (i.e. a set of tuples (t, p)) and
(ii) for each t, a context ct, representing p(V | T). Instead of
storing a set of tuples (t, p) and a context ct for each t, equiva-
lently, we can directly store a set of triples (t, p, ct). However,
this is simply a categorical distribution of pairs (t, ct). Thus,
the distribution p(S) can be represented by a categorical dis-
tribution of such pairs (t, ct). We call l = (t, ct) a lifted state,
and p(L) a lifted state distribution.

Each lifted state l describes a distribution over S where
all s have the same structure t and all v are distributed ac-
cording to p(V | T=t). Note that the structures t in a lifted
state distribution p(L) need not be distinct (due to splitting,
see Section 4.3). Thus, a lifted state distribution p(L=l) with
l = (t, ct), ρ(pi(Vi | t)) ∈ range ct and p(V | t) = Πipi(Vi | t, ct)
describes a distribution of states s as follows2:

p(S=s) = p(T=t,V=v) =∑
{li=(ti,ci)|ti=t}

p(L=li) p(V=v | ti) (5)

2For p(V |T) = Πi pi(Vi |T), we assume that the Vi are assigned
to the pi according to their labels: All Vi that have label dj in t are
distributed according to the distribution with label dj in ct.



4 Lifted Filtering via Exchangeable
Decomposition

In the following, we present a RBSE algorithm that uses the
factorized multiset distribution to represent the current state
distribution. Given a prior distribution of states p(St |y1:t), the
calculation of the posterior distribution after observing yt+1,
i.e. p(St+1 | y1:t+1) can be decomposed into the following
two steps: The predict step calculates the distribution after
applying the transition model p(St+1 |St), i.e. p(St+1 |y1:t) =∑

st
p(St+1 | St=st) p(St=st | y1:t). Afterwards, the posterior

distribution is calculated by employing the observation model
p(yt+1 |St+1):

p(St+1 |y1:t+1) =
p(yt+1 |St+1) p(St+1 |y1:t)

p(yt+1 |y1:t)
(6)

Interestingly, these steps can be performed directly on the
lifted states. This is possible because for multiset rewriting,
it is only necessary to know how many entities have a certain
property, but their specific order or identity is not relevant.
It has been shown that exactly such exchangeability proper-
ties (reflected by exchangeability of the value distribution)
allow efficient Lifted Inference [Niepert and Van den Broeck,
2014].

4.1 Predict
For the predict step, we need to define the transition model
p(St+1 |St). The dynamics of the system is described in terms
of compound actions, as introduced in Section 2. However,
we have to account for the structured entities (leading to more
complex preconditions and effects) and the lifted state repre-
sentation (requiring splitting when the preconditions are inde-
terminate, explained in Section 4.3). In the following, these
concepts are introduced more formally.

Actions describe the behavior of the entities. An action is a
pair (c, e,w) consisting of a precondition list c ∈ C and an
effect function e ∈ F . A precondition list is a list of con-
straints on entity structures and their corresponding values,
i.e. boolean functions: C = [Eτ × V → {>,⊥}]. The idea of
applying an action to a lifted state is to bind entities to the pre-
conditions. Specifically, one entity is bound to each element
in the precondition list, and entities can only be bound when
they satisfy the corresponding constraint. The effect func-
tion then manipulates the state based on the bound entities
(by inserting, removing, or manipulating entities or the distri-
butions stored in the context). We call such a binding action
instance, i.e. an action instance is a pair of an action and a list
of entity structures. Entity structures can be indeterminate re-
garding a precondition, as some values v drawn from p(V |T)
(represented by ct) may satisfy the precondition, while others
do not. This case requires splitting, described in Section 4.3.
For now, we assume that the preconditions are determinate.

A Compound Action k ∈ K is a multiset of action instances.
It is applied to a state by composing the effects of the indi-
vidual action instances. In the following, we are only con-
cerned with applicable maximal compound action (AMCAs,
see Section 2), which define the transition model.

Compound action probabilities: Our system is probabilis-
tic, which means that each AMCA is assigned a probabil-
ity. In general, any function from the AMCAs to positive real
numbers which integrates to one is a valid definition of these
probabilities, that might be plausible for different domains.
Here, we use the probabilities that arise when each entity in-
dependently chooses which action to participate in (which is
the intended semantics for the activity recognition problems
we are concerned with). In this case, the probability of each
compound action is based on the number of options specific
entities can be bound to the preconditions of the actions, and
a weight for each action. For details, we refer to [Barbuti et
al., 2011].
Transition model: The distribution of the AMCAs define the
distribution of successor states, i.e. the transition model. The
successor states of l are obtained by applying all AMCAs to
l. The probability of each successor state l′ is the sum of the
probabilities of all AMCAs leading to l′:

p(L′=l′ |L=l) =
∑

{k|apply(k,l)=l′}

p(K=k |L=l) (7)

Thus, given a prior lifted state distribution and a set of ac-
tions, the following steps have to be performed to obtain the
posterior lifted state distribution: (i) Split the lifted states un-
til all preconditions are determinate, see Section 4.3, (ii) com-
pute all action instances of each action, (iii) compute all AM-
CAs and their probabilities, (iv) apply all AMCAs to the lifted
state, (v) calculate the probabilities of the resulting successor
states.

Step (ii) can be solved by simple forward constraint satis-
faction. Step (iii) can also be implemented by a search-based
approach, i.e. building the compound actions by incremen-
tally adding all applicable action instances. Additional effi-
ciency can be gained by noting that multiset insertion is com-
mutative. Therefore, we can define an arbitrary order of the
action instances and when incrementally building the com-
pound actions only insert instances that are “not smaller” than
the last inserted action instance.

4.2 Update
Given a state distribution p(S |yt) = p(T,V |yt) (which might
be represented by a lifted state representation via Equation
5), the update step can be decomposed into the update of the
structure, and the update of the value distribution. This be-
comes obvious by applying the chain rule and Bayes’ theo-
rem to the distribution:

p(S |yt) =p(T,V |yt)

=p(T |yt) p(V |yt,T)

=
p(yt |T)p(T)

p(yt)︸ ︷︷ ︸
(a)

p(yt |V,T)p(V |T)

p(yt |T)︸ ︷︷ ︸
(b)

(8)

The factor (a) corresponds to the update of the structure,
and (b) is the update of the value distribution. The values
p(yt) and p(yt | T) are normalization factors that can be ob-
tained by marginalization. Both factors of the update can be
computed on the lifted state representation: Step (a) means



that the weight of each structure (i.e. the weight of the corre-
sponding lifted state) is multiplied by observation probability
p(yt+1 | T). Step (b) corresponds to syntactically manipulat-
ing of each context ct, i.e. modifying the parametric distri-
bution p(V | t). For example, if P(V | T) and p(yt+1 | V,T)
follow normal distributions, this corresponds to the standard
Kalman filter update.

When p(V | yt+1,T) can no longer be represented by a
product of exchangeable parametric distributions, we have to
split the lifted state, described in Section 4.3. For example,
regarding the situation in Equation 4, when observing a sp-
eficic person (say, Alice) at a specific location, the name and
location are no longer independent.

4.3 Splitting
During action instance computation and during the update
step, two closely related problems arise: (1) While comput-
ing action instances, a precondition can be satisfied for some
ground states s represented by a lifted state l, and not satis-
fied by others which are also represented by l. (2) Due to ob-
servations, the resulting ground state distribution previously
represented by a lifted state may no longer be representable
by a single lifted state. In general, the ground states form
partitions based on whether a constraint is satisfied or not (in
action instance computation) or whether they can be repre-
sented exactly by a single lifted state using an exchangeable
parametric distribution for p(V |T) in the update step.

We want to compute lifted states that describe the parti-
tions, without requiring a complete enumeration of all ground
states first. This is done by manipulating the lifted states by
an operation called splitting. More specifically, splitting a
lifted state l results in a set of lifted states L such that: (1) L
describes the same distribution of ground states as l, and (2)
for each li ∈ L, all ground states si described by li lie in the
same partition. How splitting is done exactly depends on the
parametric form of p(V). In the following, we describe split-
ting for urns without replacement on equality constraints:

Suppose we want to split the property q on the constraint
“q = v”. Intuitively, the strategy is to ground the values of the
specific property q. Suppose the values of q are distributed ac-
cording to an urn without replacement with n different values,
U(v1, . . . , vn). We split this situation into n worlds, where in
world i, q has value vi. For example, splitting the state in
Equation 4 results in two lifted states, one where Alice is at
the location distributed according to L1, and one where Alice
is at the location distributed according to L2. Splitting into n
lifted states (instead of two lifted states, one where the pre-
condition is satisfied for e and one where it is not satisfied)
is necessary to preserve the independence and exchangeabil-
ity properties of the remaining urn. The general procedure
for splitting urns is shown in Algorithm 1. Note that splitting
only affects the specific property that we split on, but other
properties are still represented in lifted form. The approach
is conceptually similar to splitting parametric factors in First-
order Variable Elimination [Poole, 2003].

Splitting rules for other kinds of parametric distributions
can be developed by following the same idea. In general,
we can split a distribution when a corresponding conditional
distribution (conditioned on the constraint that we split on) is

Algorithm 1 For lifted state l, split the property q ∈ K with
label d ∈ D, distributed according to urn u.

1: function SPLIT-URN(l=(t, c),q,d,u)
2: for value v in u do
3: u′← u without v
4: e′← e⊕ 〈q: d′〉
5: c′← c⊕ 〈d : u′, d′ : δv〉
6: t′ ← t ∪- J 1e K ] J 1e′ K
7: l′← (t′, c′)
8: p(l′)← Probability of v in u
9: end for

10: return Categorical Distribution p(L′)
11: end function

Figure 1: Number of lifted and grounded states during inference for
the first scenario.

still exchangeable and can still be represented parametrically.

5 Qualitative Examples
In this section, we provide an intuition for the qualitative
effect of the lifted state representation, by comparing LiMa
with an exact propositional filtering approach that maintains
p(S) by complete enumeration. We compare the the cardinal-
ity p(L) (handled by LiMa) and p(S) – which is an indicator
of space and time complexity. We do not compare LiMa with
other approaches, as they are either approximate, or cannot
handle identifying observations at all.

We use two scenarios from the HAR domain for evalua-
tion. The first scenario [Schröder et al., 2017] consists of
simulated sensor data of three persons acting in an office en-
vironment observed by presence sensors. For each person,
their name, location and whether they hold an object is mod-
eled. The simulated sensor data do not reveal the identity
of the persons nor the number of persons per location. At
timestep t = 10, an identifying observation is been made (Al-
ice is at the printer), resulting in a split of the lifted states on
the predicate “Name=Alice”.

The second scenario is a person tracking task with anony-
mous sensors (similar to the previous scenario), but uses real
sensor data of PIR and light switch sensors. The data consists
of 35 observation sequences of 1 to 7 agents (5 each) who

Figure 2: Number of lifted and grounded states during inference for
the second scenario.



Figure 3: Mean number of states for second scenario for different
number of persons.

move between 14 rooms in an office. The dataset is available
at [Kasparick and Krüger, 2013]. We model both scenarios
by entities whose name properties are distributed according
to a finite urn. Both scenarios have a compound action se-
mantics, as all persons can simultaneously move between ob-
servations.

Figures 1 and 2 show the number of states necessary to
represent the posterior p(St) over time. For both scenarios,
using the lifted state representation, the number of states rep-
resented explicitly is several times smaller. Note that the
ground and the lifted states represent exactly the same dis-
tribution (see Equation 5). Figure 3 shows the mean number
of states occurring during inference for the second scenario,
for different numbers of agents. Here, we see that the effect
gets more pronounced for larger number of agents. The rea-
son for this is the increase of the number of ground states due
to the factorial number of entity-name associations (that are
all represented by a single lifted state).

The number of explicit state representations linearly corre-
sponds to runtime, as compound action computation (which
is the most computationally expensive part of the filtering
algorithm) has to be performed individually for each state.
Thus, the empirical results clearly demonstrate that LiMa can
be order of magnitude faster.

6 Related Work
Another class of approaches concerned with performing in-
ference over compact representations of probability distribu-
tions is known as Lifted Probabilistic Inference [De Raedt et
al., 2016]. Lifted Inference can be seen as decomposing a
distribution into exchangeable components and handling suf-
ficient statistics of them [Niepert and Van den Broeck, 2014].
The exchangeable decomposition is made explicit in our ap-
proach – each factor of the value distribution is exchangeable.
We are then also only interested in sufficient statistics, namely
how many entities have a certain property.

Ideas of Lifted Inference have been applied to RBSE (i.e.
to dynamic domains) in the Relational Kalman Filter [Choi et
al., 2015], an approach that is restricted to a Gaussian state
distribution and a linear transition model.

The primary reason that makes it difficult to directly apply
Lifted Inference algorithms to MRSs are the hard constraints
that are present in the transition semantics: which entity can
perform which actions, the fact that each entity must perform
exactly one action etc. Interestingly, computing compound
actions is a special case of Lifted Weighted Model Count-

ing [Gogate and Domingos, 2012], that additionally considers
such hard constrains.

There are a number of other approaches that aim at finding
compact descriptions of sets of states in dynamic systems,
like Relational POMDPs [Sanner and Boutilier, 2009] and
Logical Filtering [Shirazi and Amir, 2011]. They employ sit-
uation calculus to describe states and actions, but are not ex-
plicitly concerned with efficient filtering. The idea of using
independent factors for RBSE in multi-agent settings is also
explored by [Pfeffer et al., 2009], but this approach needs to
multiply the factors and then sample from the joint, whereas
LiMa only resorts to the joint distribution when necessary.

An RBSE algorithm that, similar to LiMa, uses state de-
scriptions that each represents a set of specific states is the
Relational Particle Filter [Nitti et al., 2013]. It uses states
where some variables are described by specific values and
others are represented by parametric distributions. Similar to
LiMa, the approach can handle continuous and infinite do-
mains. In cases where we require a split, the algorithm sam-
ples from the corresponding distributions, instead of manipu-
lating the exact distributions on a parametric level.

Stochastic Relational Processes (SRPs) [Thon et al., 2011]
use causal probabilistic logic to describe the transition
model of a RBSE algorithm, i.e. by a set of probabilistic
precondition-effect rules. Opposed to the factorized multiset
states used in LiMa, SRPs use a ground state representation –
although a part of the transition model can be calculated in a
lifted way (for calculating the successor states, not all ground
rules need to be generated).

7 Conclusion

We presented LiMa, a recursive Bayesian state estimation
(RBSE) algorithm that uses a Probabilistic Maximally Paral-
lel Multiset Rewriting System to model the underlying state
dynamics. It uses a factorized representation for distribu-
tions of multisets and exploits exchangeability to perform
the complete RBSE cycle on this compact representation,
without needing to sample from or to enumerate all ground
states. Empirical evidence in two activity recognition do-
mains shows that LiMa needs to represent a much lower num-
ber of states explicitly.

There are scenarios (e.g. containing many identifying ob-
servations) that might require repeated splitting until the
state representation is completely grounded, which is a
well-known problem in the filtering literature [Boyen and
Koller, 1998]. Therefore, future research will concentrate
on methods that allow to maintain the factorized represen-
tation when the independence assumptions hold only approx-
imately, methods that re-introduce factorized representations
(similar to merging in Lifted Inference, e.g. [Kersting et al.,
2009]), and using other representations for p(V|T), like Sum-
Product Networks [Poon and Domingos, 2011] or Exchange-
able Variable Models [Niepert and Domingos, 2014]. A fur-
ther research goal is to investigate whether the multiplicities
of entities can also be represented by parametric distributions,
which would lead to an even more compact representation of
distributions.
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