CoMoRea'19 - 15th Workshop on Context Modeling and Recognition

Combining Symbolic Reasoning and Deep Learning
for Human Activity Recognition

Fernando Moya Ruedal, Stefan Liidtke2, Max Schroder3, Kristina Yordanova?, Thomas Kirste?, Gernot A. Fink!
! Department of Computer Science, TU Dortmund University, Dortmund, Germany
2 Department of Computer Science, University of Rostock, Rostock, Germany
3 Department of Communications Engineering, University of Rostock, Rostock, Germany

{fernando.moya, gernot.fink} @tu-dortmund.de, {stefan.luedtke2, max.schroeder, kristina.yordanova, thomas.kirste } @uni-rostock.de

Abstract—Activity recognition (AR) plays an important role
in situation aware systems. Recently, deep learning approaches
have shown promising results in the field of AR. However, their
predictions are overconfident even in cases when the action class
is incorrectly recognized. Moreover, these approaches provide
information about an action class but not about the user context,
such as location and manipulation of objects. To address these
problems, we propose a hybrid AR architecture that combines
deep learning with symbolic models to provide more realistic
estimation of the classes and additional contextual information.
We test the approach on a cooking dataset, describing the
preparation of carrots soup. The results show that the proposed
approach performs comparable to state of the art deep models
inferring additional contextual properties about the current
activity. The proposed approach is a first attempt to bridge the
gap between deep learning and symbolic modeling for AR.

Index Terms—Human Activity Recognition, Symbolic Reason-
ing, Deep learning

I. INTRODUCTION

To provide context-aware services, a system has to be
able to reason about the user’s whereabouts [13]. Human
activity recognition (HAR) addresses the problem of iden-
tifying person’s activities based on, usually sensor-based,
observations. There are two main HAR paradigms: data-
driven and knowledge-based (or context aware) [1], [22].
Data-driven approaches rely on large datasets from which a
model for a specific problem is learnt. In the recent years,
deep learning approaches have shown promising results in
HAR especially when given enough training data [6], [8],
[16], [21]. However, their predictions could be overconfident,
leading to very accurate recognition of classes with enough
training samples and to very confident incorrect prediction of
classes with few training samples [7]. Besides, data-driven
approaches do not incorporate a semantic structure of the
recognized activities, which if present, would have allowed
reasoning not only about the actions being executed, but also
about user goals, situation, and causes of behavior [1]. To
address these limitations, knowledge-based approaches rely
on symbolic models describing the possible behaviors to
reason about the user’s actions and whereabouts [17]. One
problem with these approaches is that they are often unable
to cope with uncertainty in the observations. To solve this,

978-1-5386-9151-9/19/$31.00 ©2019 IEEE 22

some works propose the combination of symbolic models and
probabilistic reasoning [24]. This type of models is also known
as computational state space models (CSSM) [12].

In this work, we go a step further and combine the com-
putational power of deep learning and the ability of CSSMs
to reason about a person’s context. We introduce a joint
approach that combines convolutional neural networks (CNN5s)
with CSSMs to produce additional information about a user’s
situation. We call this approach Hybrid Computational Causal
Behaviour Models (HCCBM). We show that the combined ap-
proach does not reduce the recognition performance compared
to pure CNNs, but it provides additional information, which
the pure neural networks are not able to provide.

The paper is structured as follows. In Section II, we discuss
the related work in deep learning architectures and symbolic
models for HAR. Section III describes the methods and the
proposed combined approach. We evaluate the approach in
Section IV and we conclude the work in Section V.

II. RELATED WORK

Deep architectures are the state of the art in different fields
of pattern recognition, e.g., image classification and segmenta-
tion, word spotting and speech recognition. In HAR applica-
tions, deep architectures have been applied to multichannel
time series in a sliding window framework [6], [8], [16],
[19], [21]. Convolutional neural networks (CNNs) capture
the complex human movements by combining the feature
extraction and classification. By learning features directly from
raw data in conjunction with the classifier, CNNs become
more discriminative with respect to human actions exploiting
their hierarchical composition. CNNs find temporal relations,
invariant to small temporal translations and noise, from raw
data by combining different non-linear feature extractors and
pooling operations. The authors in [19], [21] proposed a CNN
with convolutional layers applied along the time axis, called
temporal-convolution layers. They applied the convolutions
over single or all sensors’ measurements. These CNNs are
rather shallow in comparison with the ones used for image
classification [10]. They have a maximum of four temporal-
convolution layers followed by a pooling layer and a softmax
classifier. In [16], CNNs were combined with recurrent neural
networks (RNNs). The later ones are suitable for processing

CoMoRea'19 - 15th Workshop on Context Modeling and Recognition

sequences. The authors replaced the fully-connected layers
by two layers of long short-term memories (LSTMs). In [8],
the authors compared a multilayer perceptron (MLP), a CNN,
similar to [19], a three-layer LSTM and a one-layer BLSTM
networks. BLSTM are similar to LSTM, however, they process
sequences following forward and backward directions. Though
the BLSTM network performed better, the CNN showed to
be more robust against parameter changes. In general, CNNs
tend to be over-confident in their predictions. Besides, there is
no measure of uncertainty of their predictions. The authors
in [5] argued that applying dropout is similar to train an
ensemble of different networks. Using dropout, a random set
of neurons is dropped from the network. Therefore, multiple
paths that produce the same output are learnt. The authors in
[4] showed that using dropout to each layer can be considered
as a Gaussian process; thus, the predictive mean, variance and
uncertainty can be derived. The authors in [7] extended these
considerations by adjusting the CNN’s predictions based on
uncertainty information using Dropout in testing.

In difference to the above mentioned approaches,
knowledge-based approaches rely on a model of the possible
actions and context [2], [20]. The model is often represented in
the form of ontology [17] based on which the system can infer
the actions and context. One problem with these approaches is
that they are often unable to cope with ambiguous or missing
observations. To cope with this problem, some approaches
propose the combination of symbolic models with probabilistic
reasoning [9], [12], [18]. These approaches use concise rule-
based representation of the possible actions and the relevant
context and probabilistic inference engines such as Bayesian
inference to reason about the observed actions and context
in probabilistic manner. Such type of approaches are also
known as computational state space models (CSSMs) [12].
Another of their advantage is that one needs just a few rules,
based on which rich behavior models with millions of possible
executions sequences and variation in context can be generated
[24]. This is opposed to ontology based approaches where
all behavior variations have to be manually modeled. While
most of the existing CSSM approaches are able to generate
models with up to tens of thousands of states, there are
some CSSMs that can perform adequate inference in models
with hundreds of millions of states. One such approach is
Computational Causal Behavior Models (CCBM), which uses
an extension of the Planning Domain Definition Language
(PDDL) to define the rules and particle or marginal filter for
probabilistic inference [14]. In this work, we combine CCBM
with CNNs to provide context-aware activity recognition.

IIT. METHODS

We propose an approach that uses deep architectures as
expected observations for computational state space models
to produce additional information about a user’s situation. In
what follows, we first introduce the CNN used for processing
multichannel time-series for human activity recognition. We
then describe the procedure for calculating pessimistic predic-
tions of CNNs. Finally, we introduce the CCBM model.

A. Deep architecture

We used two CNN architectures for predicting human ac-
tions from multichannel-time series, following the architecture
designs in [16] for recognizing activities of daily life and
in [6] for recognizing activities in order picking scenarios.
Multichannel-time series are recordings from Inertial Mea-
surement Units (IMUs) that are attached to the human body.
The architectures are composed of convolutional, pooling
and fully-connected layers. Their convolution and pooling
operations are carried out along the time axis where temporal-
convolution layers extract temporal local features, and pooling
operations introduce temporal invariance. Subsequent fully-
connected layers combine the local features and create an
abstract representation of an input sequence. A temporal
convolution layer can be interpreted as a 3D volume of filters
[6], [16], [19], [21]. It consists of C number of learnable
filters that activate to certain type of feature at some temporal
state in a feature-map input X’ producing a feature-map X’ of
C number of activations. A temporal convolution connecting
layers i and j is a combination of: first, a convolution operation
between the input feature-map X;(r p ¢ and each of the filters
wir,1,c7) in layer j. Where, T is the length of the sequence, D
the number of sensors, C the number of feature maps, and F
the length of the filter; second, an addition of a bias b € B;
and third, a non-linear activation function o (-). The activation
function is ReL.U.

A max-pooling layer is used for downsampling a feature-
map. A CNN for classification uses a softmax activation layer,
which computes pseudo-probabilities of an input sequence
XiPut belonging to a class k; € K. The network’s input X" is
a sequence segment from D number of different sensors. These
segments are extracted following a sliding-window approach
with a window’s size of T and a step of s [3], [6], [16]. The
input’s size is [T, D, 1]. During training, sequence segments
X"t wwith label y from a set of labels Y are forwarded to
the network and the cross-entropy loss between the estimated
probabilities x;""*" and the corresponding target label y; € Y is
minimized. The first CNN architecture, based on [6], contains
B parallel branches. Each branch has sequences per IMU.
The branches are composed of two blocks of two temporal
convolution and a max-pooling layers. A fully-connected layer
creates an intermediate representation of the input data per
IMU. The network combines the intermediate representations
using a MLP and forwards them to a softmax layer, see Fig.
2. Each convolutional layer has C = 64 filters of size [5 x 1].
Max-pooling layers with receptive field of [2 x 1] and stride
of 2 are used. Fully-connected layers contain 256 units. This
architecture is called CNN-IMU. The second architecture is
a simplification of CNN-IMU with a single branch, which
processes the sensor data from all of the IMUs (we call it
CNN).

B. Pessimistic predictions

CNNs output overconfident predictions leading to either
very accurate predictions or very confident and incorrect ones.
As shown in [4], a CNN with dropout after every weight

23

CoMoRea'l9 - 15th Workshop on Context Modeling and Recognition

layer can be seen as an approximation of a deep Gaussian
process. Let W;; Vj = [1,2,...,J;] be the weights of neuron
jin layer i = [1,2,...,L] and w;; Vj = [1,2,...,J;] a set of
binary variables that take the value 1 with probability p; and
0 with probability 1 — p;. Weights W/ are dropped when w/ is
set to 0. Feeding R repetitions often input sequence X™ with
label y; to a CNN at testing and w is randomly drawn for each
repetition r, the CNN’s output is normal distributed. Then, the
predictive mean p, see Equation 1, and the predictive variance
o =+/Var(y), see Equation 2, of the CNN’s output y can be
computed.

x| =

R
p(y) & 2 > X" W) Vi=[1,2,..., L] e
r=1
Var(y) & 7 gy + 5 SR S(X0, WHTH(XM, W) — E(y)TE(y)

Vi=[1,2,.., L], @

2
where 771 = %, being p the inverse of the dropout

probability, / the prior length scale, N the number of input
samples, and A the weight decay. I denotes a vector of

ones of length K. Under the assumption of this deep Gaussian
rocess, a confidence interval can Ee computed, see Equation
[7]. This interval provides upper and lower bounds for the
predictions defining an optimistic and pessimistic behavior.
The upper bound or the optimistic prediction tends to favor
larger values of the output. Contrary, the lower bound or
pessimistic prediction favors numerically smaller values.

a(y) a(y)

{E()’)—Q—%ﬁ ; E(Y)‘*'Zl—%ﬁ]) 3
with z;_¢ being 1 — quantile of the normal distribution.

The pessimistic prediction is essential for the ability of
the CCBM model to perform inference. As CCBM relies
on dynamic Bayesian inference, overly confident incorrectly
recognized classes lead to the inability of CCBM to perform
sequential inference (for more details on CCBM see below).
The pessimistic prediction, however, allows the possibility
of inferring the correct class with CCBM even if it was
incorrectly inferred with the deep model.

C. Computational Causal Behaviour Models

Our investigation uses Computational Causal Behaviour
Models (CCBM), an implementation of Computational State
Space Models. CCBM aims to estimate the state sequence of
a dynamic system from noisy and ambiguous sensor data.

CCBM uses an action language based on the Planning Do-
main Definition Language (PDDL) to describe actions possible
in a given problem domain by means of preconditions and
effects. We call the rules that describe a given action “action
templates”. Fig. 1 shows an example of an action template
for the action “take”. The :parameters clause indicates the
types of elements to which this action can be applied. In
this case, the action can be executed on an element of type
object at a given location!. The precondition then is that the
object is at the given location. If the action is executed, the
effect is that the object is no longer at that location and that
the object has been taken. Apart from the preconditions and

2

INote that “?” indicates a variable and the name after “-
this variable

is the type of

(:action take
:parameters (2o - object ?from - location)
:duration (duration (dur-id take 2o ?from))
:saliency 2
:precondition (and
(at 2?0 ?1))
(and
(not (at 2o 21))
(taken 20))
:observation (setActivity

:effect

(activity-id take 2o ?from))

Fig. 1: Action template fake in the PDDL notation.

effects, an action template contains a mapping from high level
action to the corresponding action duration and the expected
observation. The first is done with the :duration clause. The
duration can be a probability distribution, an exact duration or
empirically estimated from the training data duration. The link
to the observations is done through the :observation clause,
which links the action to a function in the observation model.

Given the action templates, the initial state distribution of
the problem, and the goals, one can generate a directed graph
from the initial to the goal states. The probability of choosing a
given action in a certain state is given through action selection
heuristics. The probability of choosing action a in state x is
defined as follows:

3

plalx) o exp(>_ N\ fi(a,x)) “
fila,x) = logv(a(x)) ©)
fola,x) = logs(a) ©®)
fala,x) = d(a(x)) @)

v(a(x)) is the revisiting factor that is 0 if the state x' =
a(x) (i.e. the state resulting from applying a to x) has already
been visited. The revisiting factor controls whether already
visited states can be visited again; s(a) is the saliency of a
that is specified in the action template. The saliency assigns
a weight to the action with respect to the remaining actions;
and &(a(x)) is the goal-distance of state x’ = a(x). The goal
distance assumes that actions closer to the goal are selected
with a higher probability. Each feature can be weighted with
Ay The usage of these parameters depends on the specific
type of behaviour to be modelled. For example, goal oriented
behaviour can be controlled through the goal distance, which
is automatically calculated by searching the state space for the
shortest path from the initial state to the goal.

In that manner, CCBM is able to reason about the most
probable action given the previous state of the user. CCBM
makes use of Bayesian Filtering methods to estimate the
state and action sequences from sensor data. It makes a
prediction of the current state x, at time step ¢ based on
the previous state x,_; and the transition probabilities p(x; |
X1-1) = Dy _a(y_) P(a | x) that are generated from the action
distribution in Equation 4.

prediction

p(xe | y1:—1) = /p(xt | xi—1)p(xr—1 | y1:—1)dx
X
(®

24

CoMoRea'19 - 15th Workshop on Context Modeling and Recognition

Based on the predicted state, it then takes the observation
into account (given by p(y; | x;)) and makes a correction of
the estimated state (Equation 9)

P(xt ‘ yl:t) — p(yf | xf)p(xf | y1:r71)
PO | yra-1)

As exact inference in large state spaces is unfeasible, CCBM
uses particle filtering or marginal filtering (a variant of particle
filtering for categorical domains [15]) to perform approximate
inference. As the marginal filter has been shown to be superior
to the particle filter in categorical domains, we use marginal
filtering in this work.

correction (9)

D. Hybrid Computational Causal Behaviour Models

Our combined approach uses the CCBM architecture, with
the difference that the expected observations are replaced with
the output from the deep model. We call this new approach
Hybrid Computational Causal Behaviour Models (HCCBM).
This is done in the following manner.

1) the deep architecture is used to learn and predict the

observed actions;

2) the output of the deep model is used as observations for
CCBM, providing a high-level observation sequence that
is used to update the state prediction of the CCBM by
weighting each state by the probability of the correspond-
ing action class, as indicated by the deep model,;

3) the action templates, initial and goal states are manually
defined;

4) the observation model P(y | x) is generated from the
distribution of the action classes, given the current obser-
vation obtained from the deep model;

5) the action templates, initial and goal states together with
the observation model are compiled into a marginal filter;

6) the filter estimates the action class and contextual prop-
erties for each time step from the deep model’s output.

The procedure is illustrated in Fig. 2.

1V. EVALUATION

We evaluate the approach on a multichannel time-series
dataset, which consists of measurements of persons preparing
a carrot soup [11].

A. Dataset

A typical meal time routine was selected as trial setting,
consisting of the following phases: (i) Prepare meal (prepare
ingredients; cook meal). (ii) Set table. (iii) Eat meal. (iv) Clean
up and put away utensils. (A symbolic map of the spatial
structure of the trial domain and the involved domain objects
are given in [11]). The dataset contains recordings from 7
persons performing K = 16 classes, which describe preparing
a carrot soup. The recording contains measurements from five
inertial measurement units (IMUs), see Fig. 2, with a total of
D = 30 sensors. The recording sample is 110Hz. A sliding
window of T = 64 or 576ms and a step size of s = 5 or
45ms are used for segmenting sequences. The window step is
small for generating a higher quantity of samples. A segment
sequence is assigned the most frequent action class y € Y,
within.

25

B. Predictions using Convolutional Neural Networks

We evaluate the performance of the two deep architectures,
see Subsection III-A, on the cooking dataset. As the data is
scarce, we followed a k-cross testing for setting the training
and testing sets, where the segment sequences of one person
is taken for testing x'*’ and the rest for training X"“". For
training, all sequence segments x € X" and their respective
y € Y/ are fed to a network at random as follows:
parameters are updated by minimizing the cross-entropy loss,
using batch gradient descent with RMSProp update rule, as
in [16]. We use a base learning rate of 5x10~°, RMS decay
of 0.95 and batch size of 128. Dropout of p = 50% on the
last two fully-connected layers is used. As the learning rate
is relatively small, networks are trained to a maximum of
100 epochs, an epoch being the number of times the training
algorithm uses the entire training set. We used Dropout on
the first and second fully-connected layer. Sensor values are
normalized to a range of [0.1], and a Gaussian noise with
zero mean and o = 5x10~* is added for simulating sensor’s
noise, as suggested in [6], [16]. The CNN-IMU contains B = 5
branches, following the number of IMUs from the dataset.

For testing, sequence segments X" are forwarded to the
network, computing class probabilities x;. The label corre-
sponding to the maximum probability in xfc is taken as the
activity class k € K. The accuracy and weighted F1 (wF1)
measures are used as performance measures, in which the
predicted activity class is compared with the expected activity
target. In addition, sequence segments X™* are forwarded to
the network, which uses dropout in testing, R = 100 times
for computing pessimistic predictions, see Subsection III-B.
We have used o = 0.045 with 1 — § =~ 0.977 for adapting
the CNN’s predictions. Table I shows the accuracies and wF1
for each of the persons’ sequences as testing sets. Differently
from [6], the architecture CNN, containing a single branch
processing segments from all the D sensors, shows better
performance than the CNN-IMU, containing B = 5 branches.
The performance on person 3 shows the worst accuracy for
both networks. The accuracy and wF1 of the networks when
using pessimistic predictions is, respectively, around 0.8% and
1.7% lesser than using the original predictions.

Table II shows the accuracy per action class k € K for both
the networks and their pessimistic predictions. Activities such
as “wash”, “move”, and “eat” present a classification accuracy
superior than 75% with a relative low deviation. However,
activities like “turn on” and “turn off” show relative low
accuracies. Using the CNN, these classes are not recognized.
This is explained with the highly unbalanced dataset, as these
activities contain small quantity of samples in comparison with
other activities. Using pessimistic predictions did not increase
the over-all performance of the networks. However, they allow
the better recognition of infrequent classes.

C. Evaluating the Hybrid CCBM Approach

To evaluate the hybrid CCBM approach, we used the
output of PCNN with o = 0.045 with 1 — § ~ 0.977
as input observations for the HCCBM model. The HCCBM

CoMoRea'l9 - 15th Workshop on Context Modeling and Recognition

Sensor-based observation of the user Convolutional neural network

C =512
IMU 1
C =512
C=64 C=64 C=64 C=64 concat, ‘
1 IMU m
[5 x 1] temporal-conv
[2 x 1] max-pooling
Sigmoid act-function
Rules Computational model of user behaviour Recognition of user behaviour
o Initial stat 2
nitial ate \
. . (i Executed
action cut onion (o] Goal states | 1 Action
precondition: ! {

the onion is not cut, 0 1Y . 1.Wash carrot

the onion is peeled, R 11 ! i 2.Cut carrots

the knife is in the hand AN 0 N 3.Peel onion

W . A 1O . Y { W 4.Cut onion
. N L A N i . 5.Take pot
effect: L ik ! P Wl -k i it 6.Fill water in
the onion is cut pot

‘o_ . ;;o

Fig. 2: The hybrid CCBM approach combining CNNs and CCBM to provide additional reasoning about the situation.

yes-
B3 i
> cupboard
) -
5] probability
e counter = . 1.00
7]
@ 0.75

ne- table -

yes - 0.50
1%
g
> sink - 025
<
=i 0.00
@
Q
<} stove -
=]

no- 1 I 1 I l U 1 1 [l 1 ' U
0 250 500 750 1000 1250 0 250 500 750 1000 1250
time time

Fig. 3: Left: answering “’Is water in the glass?” and “’Is the stove turned on?” (solid line shows the most probable state of the
property at a given time). Right: inference about the plate’s location (the darker the color, the more probable the location).

TABLE I Classification accuracy [%] and wF1 [%] for the TABLE II: Classification accuracy [%] for each of the activity
cooking dataset for each person’s sequences taken as a testing classes in the carrot dataset for the two architectures and the
set. P. CNN refers to pessimistic predictions and HCCBM pessimistic predictions. Here, / stands for =.

refers to the hybrid approach.

Activity Accuracy
e Person CNN P.CNN |CNN-IMU P.CNN-IMU | HCCBM P-HCCBM
NI ‘ U2 s s e | g | Averase wash || 82.7/62 814/6.0 [865/6.6 795787 7677175 84.6/6.0

wait 4181 39.9/172 | 3431213 355179 | 48.6/182 44.3/19.3
gl‘g\w gig gg'g ;ig gé';‘ gg‘g gg'g 23'5 g(l)'gig'f move || 74.1/15.1 75.0/13.7 | 738125 T5.4/122 | 764/152 7T1.4/16.2
PO ol D Bl Dasl A Biop dl Dol I e take 315119 28571 [222/91 297/10.5 | 3200125 31.4/10.9
AN oo dl ol Il DO L BN ol I et put 35.1/152 35.3/16.0 | 33.3/145 32.9/124 | 31.9/12.3 31.6/145
Fo ey | aot a6 608) o8l kS cut 83.8/23.2 84.4/19.0 | 82.1/29.0 783/32.1 | 86.6/21.7 87.4/13.4
e | oo T |88 a3) a0) 60 oh1 | 373 £ 10 fill 513/9.1 53.4/58 |51.2/100 48.5/13.1 | 269/9.5 40.5/18.5
o 31663 [382521 | 366] 64.2] 66. 2+4 wmon || 0000 64100 |4594 13.6248 |0000 3.6/9.45
N Do s L s e | g | Averase cook ||82.8/0.8 832084 |64.5367 628362 | 69.332.9 7531209

wm off || 1027 46.4/415 | 30.0364 4597306 | 0.0/0.0 46.8/42.4
g"g\w 23"7) Z;g gg'é gg'} gg'g gZ'é 2;5.'2 gfg i 2? open 254/23.7 45.8/23.0 | 36.4/199 454206 | 262214 385227
O okl ol Beed Boodl Bcud Bosd Biod ISR close || 44.0/227 439236 | 43.6/163 414275 | 46.3192 423/165
O G | S| Gad] 3231 595 | 05 | 862 | 6701 G122 54 sit down || 343/34.6 52 5/18.9 | 492/19.6 47.5/23.0 | 37.4/355 48.4/23.6
e el el vl e B el Bl Id I cat 91.6/58 815212 |84.1/209 84.8/168 | 81.6/36.2 87.9/12.6
e | [G701 475 | G09 | 08 | 049 | €38 5004 104 drink |[39.431.9 77.7/20.4 | 76,1358 70.1/332 | 42.6/32.4 49.6/312
- 41650570 | 60.1] 550 | 65.1 | 66. 14 stand up || 11.7/17.4 48.3/38.8 | 44.8/30.9 43.0/402 | 42/11.0 32.2/39.1

model consisted of 44 action templates, 99 ground actions, sequences leading from the initial to the goal states). Due to
> 1.47 x 10® states and > 6.13 x 10% plans (execution the very large state space, marginal filtering [15] was used to

26

CoMoRea'19 - 15th Workshop on Context Modeling and Recognition

estimate the current state and the corresponding properties. For
the action selection heuristics, we used the goal distance as a
heuristic. Revisiting already visited states was also enabled.
The rest of the heuristics were not used. The last row of Table
I shows the overall accuracy and F1 score for HCCBM. It
can be seen that HCCBM had a bit lower performance than
the CNN (although in the case of person 2, it outperformed
the deep models). Applying Wilcoxon-Mann-Whitney test on
the results from the CNN and the HCCBM shows that there
is no significant difference in the results (p-value of 0.1282).
This indicates that the approach performs comparable to state
of the art deep models and that the symbolic model does not
significantly reduce the recognition rate. Looking at the class-
wise performance in Table II, it can be seen that HCCBM out-
performed the remaining models for the action classes “wait”,
“move”, “take”, “put”, and “cut”. It was, however, unable to
recognize the actions “drink” and “stand up”. This can be
explained with the fact that HCCBM performs sequential state
estimation. If a given action was not correctly recognized, then
the preconditions for the next action were not met, thus the
action was not recognized. For example, for the action “drink”,
it is often that the earlier action “fill water” was not recognized.

Although we used the pessimistic CNN to reduce the effect
of incorrectly identified actions, HCCBM still had problems
with actions with very low probability. In difference to stan-
dard deep learning approaches, however, the HCCBM enables
answering application specific questions such as “Is water in
the glass?”, “Is the stove turned on?”, or “Where is the plate?”.
Fig. 3 illustrates these inference targets for an excerpt of the
data. This is possible thanks to the symbolic structure of the
model. It allows reasoning about context elements related to
the executed actions, causal relations, and goals the person is
following. This makes HCCBM a powerful tool for reasoning
beyond the action classes.

V. CONCLUSION

In this work, we presented a hybrid approach for activ-
ity recognition that combines deep learning methods with
symbolic modeling and Bayesian inference. The approach is
able to recognize a person’s actions, locations, objects being
manipulated as well as causal dependencies between actions
and elements in the environment. The results showed that the
approach performs comparable to state of the art deep learning
approaches. It also provides additional context information that
the deep models are not able to infer.

In the future, we plan to test the approach on new datasets
from the warehouses domain recorded both in laboratory and
real settings. Furthermore, we plan to replace the manual rule
definition with an automatic generation from textual sources
as proposed in works such as [23].

REFERENCES

[1] Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activ-
ity recognition. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 42(6), 790-808 (2012)

27

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

Chen, L., Nugent, C., Okeyo, G.: An ontology-based hybrid approach
to activity modeling for smart homes. IEEE Trans. on Human-Machine

Systems 44(1), 92-105 (Feb 2014)
Feldhorst, S., Masoudenijad, M., ten Hompel, M., Fink, G.A.: Motion

classification for analyzing the order picking process using mobile
sensors. In: Proc. Int. Conf. Pattern Recognition Applications and
Methods. pp. 706-713. SCITEPRESS (2016)

Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning. In: Int. Conf. on machine
learning. pp. 1050-1059 (2016)

Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.:
Maxout networks. Proc. Conf. computer vision and pattern recognition
pp. 770-778 (2013)

Grzeszick, R., Lenk, J.M., Rueda, FM., Fink, G.A., Feldhorst, S., ten
Hompel, M.: Deep neural network based human activity recognition
for the order picking process. In: Proc. Int. Workshop on Sensor-based
Activity Recognition and Interaction. ACM (2017)

Grzeszick, R., Sudholt, S., Fink, G.A.: Optimistic and Pessimistic
Neural Networks for Object Recognition. In: Proc. Intl. Conf. on Image
Processing (2017)

Hammerla, N.Y., Halloran, S., Ploetz, T.: Deep, convolutional, and
recurrent models for human activity recognition using wearables. arXiv
preprint arXiv:1604.08880 (2016)

Hiatt, L.M., Harrison, A.M., Trafton, J.G.: Accommodating human
variability in human-robot teams through theory of mind. In: Proc. Int.
J. Conf. Artificial Intell. pp. 2066-2071. AAAI, Barcelona, Spain (2011)
Krizhevsky, A., Sutskever, 1., Hinton, G.E.: Imagenet classification with
deep convolutional neural networks. In: Advances in neural information
processing systems. pp. 1097-1105 (2012)

Kriiger, F., Hein, A., Yordanova, K., Kirste, T.: Recognising user
actions during cooking task — imu data. University of Rostock (2017),
http://purl.uni-rostock.de/rosdok/id00000154

Kriiger, F., Nyolt, M., Yordanova, K., Hein, A., Kirste, T.: Computational
state space models for activity and intention recognition. a feasibility
study. PLoS ONE 9(11), 109381 (11 2014)

Kriiger, F., Yordanova, K., Burghardt, C., Kirste, T.: Towards creating
assistive software by employing human behavior models. J. Ambient
Intelligence and Smart Environments 4(3), 209-226 (May 2012)
Nyolt, M., Kriiger, F.,, Yordanova, K., Hein, A., Kirste, T.: Marginal
filtering in large state spaces. Int. Journal of Approximate Reasoning
61, 16-32 (June 2015)

Nyolt, M., Kriiger, F., Yordanova, K., Hein, A., Kirste, T.: Marginal
filtering in large state spaces. Int. J. Approx. Reasoning 61, 16-32 (June
2015)

Ordéitez, EJ., Roggen, D.: Deep convolutional and Istm recurrent neural
networks for multimodal wearable activity recognition. Sensors 16(1),
115 (2016)

Rafferty, J., Nugent, C.D., Liu, J., Chen, L.: From activity recognition
to intention recognition for assisted living within smart homes. IEEE
Trans. on Human-Machine Systems 47(3), 368-379 (June 2017)
Ramirez, M., Geffner, H.: Goal recognition over pomdps: Inferring the
intention of a pomdp agent. In: Proc. J. Conf. Artificial Intelligence. pp.
2009-2014. AAAI Press, Barcelona, Spain (2011)

Ronao, C.A., Cho, S.B.: Deep convolutional neural networks for human
activity recognition with smartphone sensors. In: Int. Conf. on Neural
Information Processing. pp. 46-53. Springer (2015)

Roy, P.C., Giroux, S., Bouchard, B., Bouzouane, A., Phua, C., Tolstikov,
A., Biswas, J.: A possibilistic approach for activity recognition in
smart homes for cognitive assistance to Alzheimer’s patients. In: AR
in Pervasive Intelligent Environments, Atlantis Ambient and Pervasive
Intelligence, vol. 4, pp. 33-58. Atlantis Press, Amsterdam (2011)
Yang, J., Nguyen, M.N., San, PP, Li, X., Krishnaswamy, S.: Deep
convolutional neural networks on multichannel time series for human
activity recognition. In: IJCAL pp. 3995-4001 (2015)

Ye, J., Stevenson, G., Dobson, S.: Usmart: An unsupervised semantic
mining activity recognition technique. ACM TiiS 4(4), 16:1-16:27
(2014)

Yordanova, K.: Extracting planning operators from instructional texts
for behaviour interpretation. In: German Conf. on Artificial Intelligence.
Berlin, Germany (Sptember 2018)

Yordanova, K., Kirste, T.: A process for systematic development of
symbolic models for activity recognition. ACM TiiS 5(4), 20:1-20:35
(Dec 2015)

